首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a method for extreme occluder simplification. We take a triangle soup as input, and produce a small set of polygons with closely matching occlusion properties. In contrast to methods that optimize the original geometry, our algorithm has very few requirements for the input— specifically, the input does not need to be a watertight, two‐manifold mesh. This robustness is achieved by working on a well‐behaved, discretized representation of the input instead of the original, potentially badly structured geometry. We first formulate the algorithm for individual occluders, and further introduce a hierarchy for handling large, complex scenes.  相似文献   

2.
Point cloud data is one of the most common types of input for geometric processing applications. In this paper, we study the point cloud density adaptation problem that underlies many pre‐processing tasks of points data. Specifically, given a (sparse) set of points Q sampling an unknown surface and a target density function, the goal is to adapt Q to match the target distribution. We propose a simple and robust framework that is effective at achieving both local uniformity and precise global density distribution control. Our approach relies on the Gaussian‐weighted graph Laplacian and works purely in the points setting. While it is well known that graph Laplacian is related to mean‐curvature flow and thus has denoising ability, our algorithm uses certain information encoded in the graph Laplacian that is orthogonal to the mean‐curvature flow. Furthermore, by leveraging the natural scale parameter contained in the Gaussian kernel and combining it with a simulated annealing idea, our algorithm moves points in a multi‐scale manner. The resulting algorithm relies much less on the input points to have a good initial distribution (neither uniform nor close to the target density distribution) than many previous refinement‐based methods. We demonstrate the simplicity and effectiveness of our algorithm with point clouds sampled from different underlying surfaces with various geometric and topological properties.  相似文献   

3.
This paper considers the problem of interactively finding the cutting contour to extract components from a given mesh. Some existing methods support cuts of arbitrary shape but require careful and tedious input from the user. Others need little user input however they are sensitive to user input and need a postprocessing step to smooth the generated jaggy cutting contours. The popular geometric snake can be used to optimize the cutting contour, but it cannot deal with the topology change. In this paper, we propose a geodesic curvature flow based framework to overcome all these problems. Since in many cases the meaningful cutting contour on a 3D mesh is locally shortest in the sense of some weighted curve length, the geodesic curvature flow is an ideal tool for our problem. It evolves the cutting contour to the nearby local minimum. We should mention that the previous numerical scheme, discretized geodesic curvature flow (dGCF) is too slow and has not been applied to mesh segmentation. With a careful observation to dGCF, we devise here a fast computation scheme called fast geodesic curvature flow (FGCF), which only needs to solve a smaller and easier problem. The initial cutting contour is generated by a variant of random walks algorithm, which is very fast and gives reasonable cutting result with little user input. Experiment results on the benchmark mesh segmentation data set show that our proposed framework is robust to user input and capable of producing good results reflecting geometric features and human shape perception.  相似文献   

4.
We introduce a fully automatic algorithm which optimizes the high‐level structure of a given quadrilateral mesh to achieve a coarser quadrangular base complex. Such a topological optimization is highly desirable, since state‐of‐the‐art quadrangulation techniques lead to meshes which have an appropriate singularity distribution and an anisotropic element alignment, but usually they are still far away from the high‐level structure which is typical for carefully designed meshes manually created by specialists and used e.g. in animation or simulation. In this paper we show that the quality of the high‐level structure is negatively affected by helical configurations within the quadrilateral mesh. Consequently we present an algorithm which detects helices and is able to remove most of them by applying a novel grid preserving simplification operator (GP‐operator) which is guaranteed to maintain an all‐quadrilateral mesh. Additionally it preserves the given singularity distribution and in particular does not introduce new singularities. For each helix we construct a directed graph in which cycles through the start vertex encode operations to remove the corresponding helix. Therefore a simple graph search algorithm can be performed iteratively to remove as many helices as possible and thus improve the high‐level structure in a greedy fashion. We demonstrate the usefulness of our automatic structure optimization technique by showing several examples with varying complexity.  相似文献   

5.
We develop a novel isotropic remeshing method based on constrained centroidal Delaunay mesh (CCDM), a generalization of centroidal patch triangulation from 2D to mesh surface. Our method starts with resampling an input mesh with a vertex distribution according to a user‐defined density function. The initial remeshing result is then progressively optimized by alternatively recovering the Delaunay mesh and moving each vertex to the centroid of its 1‐ring neighborhood. The key to making such simple iterations work is an efficient optimization framework that combines both local and global optimization methods. Our method is parameterization‐free, thus avoiding the metric distortion introduced by parameterization, and generating more well‐shaped triangles. Our method guarantees that the topology of surface is preserved without requiring geodesic information. We conduct various experiments to demonstrate the simplicity, efficacy, and robustness of the presented method.  相似文献   

6.
Spectral Mesh Processing   总被引:1,自引:0,他引:1  
Spectral methods for mesh processing and analysis rely on the eigenvalues, eigenvectors, or eigenspace projections derived from appropriately defined mesh operators to carry out desired tasks. Early work in this area can be traced back to the seminal paper by Taubin in 1995, where spectral analysis of mesh geometry based on a combinatorial Laplacian aids our understanding of the low‐pass filtering approach to mesh smoothing. Over the past 15 years, the list of applications in the area of geometry processing which utilize the eigenstructures of a variety of mesh operators in different manners have been growing steadily. Many works presented so far draw parallels from developments in fields such as graph theory, computer vision, machine learning, graph drawing, numerical linear algebra, and high‐performance computing. This paper aims to provide a comprehensive survey on the spectral approach, focusing on its power and versatility in solving geometry processing problems and attempting to bridge the gap between relevant research in computer graphics and other fields. Necessary theoretical background is provided. Existing works covered are classified according to different criteria: the operators or eigenstructures employed, application domains, or the dimensionality of the spectral embeddings used. Despite much empirical success, there still remain many open questions pertaining to the spectral approach. These are discussed as we conclude the survey and provide our perspective on possible future research.  相似文献   

7.
We propose a method for interactive cloning of 3D surface geometry using a paintbrush interface, similar to the continuous cloning brush popular in image editing. Existing interactive mesh composition tools focus on atomic copy‐and‐paste of preselected feature areas, and are either limited to copying surface displacements, or require the solution of variational optimization problems, which is too expensive for an interactive brush interface. In contrast, our GeoBrush method supports real‐time continuous copying of arbitrary high‐resolution surface features between irregular meshes, including topological handles. We achieve this by first establishing a correspondence between the source and target geometries using a novel generalized discrete exponential map parameterization. Next we roughly align the source geometry with the target shape using Green Coordinates with automatically‐constructed cages. Finally, we compute an offset membrane to smoothly blend the pasted patch with C continuity before stitching it into the target. The offset membrane is a solution of a bi‐harmonic PDE, which is computed on the GPU in real time by exploiting the regular parametric domain. We demonstrate the effectiveness of GeoBrush with various editing scenarios, including detail enrichment and completion of scanned surfaces.  相似文献   

8.
Glyphs are a fundamental tool in tensor visualization, since they provide an intuitive geometric representation of the full tensor information. The Higher‐Order Maximum Enhancing (HOME) glyph, a generalization of the second‐order tensor ellipsoid, was recently shown to emphasize the orientational information in the tensor through a pointed shape around maxima. This paper states and formally proves several important properties of this novel glyph, presents its first three‐dimensional implementation, and proposes a new coloring scheme that reflects peak direction and sharpness. Application to data from High Angular Resolution Diffusion Imaging (HARDI) shows that the method allows for interactive data exploration and confirms that the HOME glyph conveys fiber spread and crossings more effectively than the conventional polar plot.  相似文献   

9.
Blending is both the strength and the weakness of functionally based implicit surfaces (such as F‐reps or soft‐objects). While it gives them the unique ability to smoothly merge into a single, arbitrary shape, it makes implicit modelling hard to control since implicit surfaces blend at a distance, in a way that heavily depends on the slope of the field functions that define them. This paper presents a novel, generic solution to blending of functionally‐based implicit surfaces: the insight is that to be intuitive and easy to control, blends should be located where two objects overlap, while enabling other parts of the objects to come as close to each other as desired without being deformed. Our solution relies on automatically defined blending regions around the intersection curves between two objects. Outside of these volumes, a clean union of the objects is computed thanks to a new operator that guarantees the smoothness of the resulting field function; meanwhile, a smooth blend is generated inside the blending regions. Parameters can automatically be tuned in order to prevent small objects from blurring out when blended into larger ones, and to generate a progressive blend when two animated objects come in contact.  相似文献   

10.
The efficient and practical representation and processing of geometrically or topologically complex shapes often demands a partitioning into simpler patches. Possibilities range from unstructured arrangements of arbitrarily shaped patches on the one end, to highly structured conforming networks of all‐quadrilateral patches on the other end of the spectrum. Due to its regularity, this latter extreme of conforming partitions with quadrilateral patches, called quad layouts, is most beneficial in many application scenarios, for instance enabling the use of tensor‐product representations based on splines or Bézier patches, grid‐based multi‐resolution techniques and discrete pixel‐based map representations. However, this type of partition is also most complicated to create due to the strict inherent structural restrictions. Traditionally often performed manually in a tedious and demanding process, research in computer graphics and geometry processing has led to a number of computer‐assisted, semi‐automatic, as well as fully automatic approaches to address this problem more efficiently. This survey provides a detailed discussion of this range of methods, treats their strengths and weaknesses and outlines open problems in this field of research.  相似文献   

11.
We present a method for simplifying a polygonal character with an associated skeletal deformation such that the simplified character approximates the original shape well when deformed. As input, we require a set of example poses that are representative of the types of deformations the character undergoes and we produce a multi-resolution hierarchy for the simplified character where all simplified vertices also have associated skin weights. We create this hierarchy by minimizing an error metric for a simplified set of vertices and their skin weights, and we show that this quartic error metric can be effectively minimized using alternating quadratic minimization for the vertices and weights separately. To enable efficient GPU accelerated deformations of the simplified character, we also provide a method that guarantees the maximum number of bone weights per simplified vertex is less than a user specified threshold at all levels of the hierarchy.  相似文献   

12.
Hexahedral meshes generated from polycube mapping often exhibit a low number of singularities but also poor‐quality elements located near the surface. It is thus necessary to improve the overall mesh quality, in terms of the minimum scaled Jacobian (MSJ) or average SJ (ASJ). Improving the quality may be obtained via global padding (or pillowing), which pushes the singularities inside by adding an extra layer of hexahedra on the entire domain boundary. Such a global padding operation suffers from a large increase of complexity, with unnecessary hexahedra added. In addition, the quality of elements near the boundary may decrease. We propose a novel optimization method which inserts sheets of hexahedra so as to perform selective padding, where it is most needed for improving the mesh quality. A sheet can pad part of the domain boundary, traverse the domain and form singularities. Our global formulation, based on solving a binary problem, enables us to control the balance between quality improvement, increase of complexity and number of singularities. We show in a series of experiments that our approach increases the MSJ value and preserves (or even improves) the ASJ, while adding fewer hexahedra than global padding.  相似文献   

13.
Medial surfaces are well‐known and interesting surface skeletons. As such, they can describe the topology and the geometry of a 3D closed object. The link between an object and its medial surface is also intuitively understood by people. We want to exploit such skeletons to use them in applications like shape creation and shape deformation. For this purpose, we need to define medial surfaces as Shape Representation Models (SRMs). One of the very first task of a SRM is to offer a visualization of the shape it describes. However, achieving this with a medial surface remains a challenging problem. In this paper, we propose a method to build a mesh that approximates an object only described by a medial surface. To do so, we use a volumetric approach based on the construction of an octree. Then, we mesh the boundary of that octree to get a coarse approximation of the object. Finally, we refine this mesh using an original migration algorithm. Quantitative and qualitative studies, on objects coming from digital modeling and laser scans, shows the efficiency of our method in providing high quality surfaces with a reasonable computational complexity.  相似文献   

14.
Fast GPU-based Adaptive Tessellation with CUDA   总被引:1,自引:0,他引:1  
  相似文献   

15.
We present an unsupervised method for registering range scans of deforming, articulated shapes. The key idea is to model the motion of the underlying object using a reduced deformable model. We use a linear skinning model for its simplicity and represent the weight functions on a regular grid localized to the surface geometry. This decouples the deformation model from the surface representation and allows us to deal with the severe occlusion and missing data that is inherent in range scan data. We formulate the registration problem using an objective function that enforces close alignment of the 3D data and includes an intuitive notion of joints. This leads to an optimization problem that we solve using an efficient EM-type algorithm. With our algorithm we obtain smooth deformations that accurately register pairs of range scans with significant motion and occlusion. The main advantages of our approach are that it does not require user specified markers, a template, nor manual segmentation of the surface geometry into rigid parts.  相似文献   

16.
Volume Preservation of Multiresolution Meshes   总被引:4,自引:0,他引:4  
Geometric constraints have proved to be efficient for enhancing the realism of shape animation. The present paper addresses the computation and the preservation of the volume enclosed by multiresolution meshes. A wavelet based representation allows the mesh to be handled at any level of resolution. The key contribution is the calculation of the volume as a trilinear form with respect to the multiresolution coefficients. Efficiency is reached thanks to the pre-processing of a sparse 3D data structure involving the transposition of the filters while represented as a lifting scheme. A versatile and interactive method for preserving the volume during a deformation process is then proposed. It is based on a quadratic minimization subject to a linearization of the volume constraint. A closed form of the solution is derived.  相似文献   

17.
Surface models derived from medical image data often exhibit artefacts, such as noise and staircases, which can be reduced by applying mesh smoothing filters. Usually, an iterative adaption of smoothing parameters to the specific data and continuous re‐evaluation of accuracy and curvature is required. Depending on the number of vertices and the filter algorithm, computation time may vary strongly and interfere with an interactive mesh generation procedure. In this paper, we present an approach to improve the handling of mesh smoothing filters. Based on a GPU mesh smoothing implementation of uniform and anisotropic filters, model quality is evaluated in real‐time and provided to the user to support the mental optimization of input parameters. This is achieved by means of quality graphs and quality bars. Moreover, this framework is used to find appropriate smoothing parameters automatically and to provide data‐specific parameter suggestions. These suggestions are employed to generate a preview gallery with different smoothing suggestions. The preview functionality is additionally used for the inspection of specific artefacts and their possible reduction with different parameter sets.  相似文献   

18.
We present a novel approach for the decimation of triangle surface meshes. Our algorithm takes as input a triangle surface mesh and a set of planar proxies detected in a pre‐processing analysis step, and structured via an adjacency graph. It then performs greedy mesh decimation through a series of edge collapse, designed to approximate the local mesh geometry as well as the geometry and structure of proxies. Such structure‐preserving approach is well suited to planar abstraction, i.e. extreme decimation approximating well the planar parts while filtering out the others. Our experiments on a variety of inputs illustrate the potential of our approach in terms of improved accuracy and preservation of structure.  相似文献   

19.
The astrolabe, an analog computing device, used to be the iconic instrument of astronomers during the Middle Ages. It allowed a multitude of operations of practical astronomy which were otherwise cumbersome to perform in an epoch when mathematics had apparently almost been forgotten. Usually made from wood or sheet metal, a few hundred instruments, mostly from brass, survived until today and are valuable museum showpieces. This paper explains a procedural modelling approach for the construction of the classical kinds of astrolabes, which allows a wide variety of applications from plain explanatory illustrations to three‐dimensional (3D) models, and even the production of working physical astrolabes usable for public or classroom demonstrations.  相似文献   

20.
This paper presents a novel algorithm for hierarchical random accessible mesh decompression. Our approach progressively decompresses the requested parts of a mesh without decoding less interesting parts. Previous approaches divided a mesh into independently compressed charts and a base coarse mesh. We propose a novel hierarchical representation of the mesh. We build this representation by using a boundary-based approach to recursively split the mesh in two parts, under the constraint that any of the two resulting submeshes should be reconstructible independently.
In addition to this decomposition technique, we introduce the concepts of opposite vertex and context dependant numbering . This enables us to achieve seemingly better compression ratios than previous work on quad and higher degree polygonal meshes. Our coder uses about 3 bits per polygon for connectivity and 14 bits per vertex for geometry using 12 bits quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号