共查询到19条相似文献,搜索用时 46 毫秒
1.
基于协作过滤的个性化服务技术研究 总被引:1,自引:1,他引:1
随着网络的普及和发展以及网络信息量的日益增加,为广大用户提供个性化服务显得尤为必要.在对个性化服务技术相关知识进行概述的基础上介绍了协作过滤信息推荐技术的基本原理、分类、所面临的困难等,并对国内外研究现状等进行了综述.最后时基于协作过滤的个性化服务技术进一步的研究工作进行了展望. 相似文献
2.
随着电子商务的迅猛发展,“信息超载”问题日渐突出,导致用户难以有效搜寻所需商品,个性化推荐技术由此在电子商务网站得到应用和普及。采用定性分析方法,对目前电子商务网站使用的信息检索、关联规则、基于内容的过滤和协同过滤等四种主要推荐技术作了应用层面的优缺点分析,并基于多个指标对其进行比较,以期为电子商务企业构建推荐系统提供决策参考。 相似文献
3.
一种电影个性化推荐系统的研究与实现 总被引:1,自引:0,他引:1
在协作过滤算法研究的基础上,考虑到相似项目之间评分的相似性,将此因素加入过滤算法得到改进的协助过滤算法,提高了算法的准确度。综合内容和协作过滤的优缺点,提出一种具有自适应调节的混合过滤算法,提高了过滤性能和准确度。根据改进的算法,针对电影领域进行实验,证明了其可行性。 相似文献
4.
5.
6.
大数据时代,各类影视资源纷纷涌现,\"信息过载\"问题在影视行业愈发凸显,有效的电影推荐算法是解决这个问题的关键。本文首先总结了电影推荐的主流推荐算法,主要有协同过滤、基于内容的推荐和混合推荐三类算法,然后比较分析了几种推荐算法的优缺点。最后,针对推荐算法的发展方向,又对基于上下文的推荐算法进行了简单的介绍。 相似文献
7.
8.
杨丹 《数字社区&智能家居》2013,(27):6067-6068,6078
为了解决信息过载的问题,我们可以通过在用户和产品之间建立二元关系的方法,利用已经拥有的比较相似的关系或者选择过程,挖掘出各用户可能感兴趣的对像。目前解决信息过载问题最有效的工具就是个性化推荐,该文利用不同的推荐算法,简单介绍了协同过滤系统,基于内容的推荐系统,基于用户—产品二部图网络结构的推荐系统,混合推荐系统。并分析这些推荐系统的特点以及存在的缺陷,帮助读者了解这个研究领域。 相似文献
9.
随着信息技术和互联网的发展,人们进入了信息过量且愈发碎片化的时代。当前,个性化信息推送是用户获取网络信息的有效渠道。由于信息的更新速度快和用户兴趣更新等问题,传统的推荐算法很少关注甚至忽略上述因素,造成最终的推荐结果欠佳。为了给用户更好的个性化推荐服务,论文首次引入截取因子,提出了组合推荐算法(CR算法)。该算法的实质是将截取因子引入到基于内容的推荐算法与基于用户的协同过滤算法中,进而生成混合推荐算法。在推荐列表中,CR算法产生的推荐结果由两部分组成:一部分由混合推荐算法生成,另一部分由基于用户的协同过滤算法生成。根据信息的发布时间,决定该信息由哪类算法产生推荐:当浏览时间与当前时间的间隔不大于某个值时,采用混合推荐算法;否则,直接采用基于用户的协同过滤算法。基于真实数据的实验结果表明,CR算法优于同类算法。 相似文献
10.
《计算机应用与软件》2015,(10)
随着保险电子商务的不断发展,保险网站的用户越来越多样化,需求差异越来越大,为不同类型的用户推荐个性化定制化的产品以提高网站销量已经成为行业趋势。针对该问题,提出基于保险行业电子商务网站的个性化推荐系统。系统采用了基于内容的推荐和基于关联规则的推荐,分别利用保险产品本身的分类特点和用户访问网站的历史记录来推荐产品,最后将两种算法进行组合推荐。实验结果表明,算法性能高,平均推荐准确率在8%左右。由此得出结论,所提算法可用于网站的线上预测推荐。 相似文献
11.
基于电子商务应用的协同过滤技术改进综述 总被引:4,自引:0,他引:4
电子商务个性化推荐具有重要的意义。协同过滤是电子商务个性化的重要实现技术之一。本文针对UBCF和IBCF方法在应用实践上的问题,总结了目前文献对于协同过滤技术的改进思路,归纳了对于CF推荐技术的各种新型算法技术文献,总结了目前对于CF技术不同的改进思路。 相似文献
12.
13.
14.
推荐系统已经成功地应用于电子商务、数字图书馆等方面。但随着近年来公共服务平台的发展,现存的推荐系统不能有效处理公共服务平台中不同类型企业之间供求关系的推荐问题,不能针对供求关系产业链做出准确、迅速的推荐。因此,根据公共服务平台的供求关系产业链并结合协同过滤技术,提出了一种新的个性化推荐模型,它基于网络平台中的企业分类、供求关系等来建立模型,并通过建立企业类用户群来缩小协同过滤时用户群体的数量,降低计算时属性空间的维度,从而提高推荐的效率。使用该模型进行推荐可以更好地帮助企业建立沟通渠道、获得服务信息,满足企业个性化的要求。 相似文献
15.
动态挖掘算法考虑顾客随时间变化的动态行为轨迹的特性,采取动态追踪,以顾客的动态行为轨迹为依据实现对顾客的个性化推荐。由于行为轨迹中时间段划分跨度对推荐源数据实用价值存在影响,故提出了时间约束定义,同时完成了该算法中自动学习功能的实现。实验结果表明,基于该算法的推荐系统有较高的推荐准确度。 相似文献
16.
推荐系统已经成功地应用于电子商务、数字图书馆等方面。但随着近年来公共服务平台的发展,现存的推荐系统不能有效处理公共服务平台中不同类型企业之间供求关系的推荐问题,不能针对供求关系产业链做出准确、迅速的推荐。因此,根据公共服务平台的供求关系产业链并结合协同过滤技术,提出了一种新的个性化推荐模型,它基于网络平台中的企业分类、供求关系等来建立模型,并通过建立企业类用户群来缩小协同过滤时用户群体的数量,降低计算时属性空间的维度,从而提高推荐的效率。使用该模型进行推荐可以更好地帮助企业建立沟通渠道、获得服务信息,满足企业个性化的要求。 相似文献
17.
经典推荐系统主要根据用户对项目的评价或者用户与项目之间的关键字相似度进行推荐,存在信息结构化程度低、语义缺乏、信息利用不充分等问题。为此,提出一种基于本体的推荐系统模型。将本体引入到推荐系统中,使用OWL语言对用户和项目信息进行描述,使用户和项目具有语义信息的同时,提高信息的结构化描述水平。在推荐过程中,通过规则分析用户行为信息并综合考虑以提高模型的推荐质量。实验结果证明,与传统推荐模型相比,该模型在信息结构化水平、语义描述等方面具有优势。采用该模型为用户推荐项目能够有效提高推荐的召回率和准确率。 相似文献
18.
推荐技术是电子商务领域里很重要的技术。本文针对现有电子商务推荐系统中存在的数据稀疏性问题和系统冷开始问题;结合语义相似性以及产品分类学的方法;提出建立产品的语义关联模型;该模型的结构通过一个行业语义信息训练中心的训练得到;最终产品的语义信息被提取出来集成到现有的基于项目的协同过滤方法中。研究结果表明该方法在一定程度上克服了稀疏性问题和冷开始问题。 相似文献