首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Agents can learn to improve their coordination with their teammates and increase team performance. There are finite training instances, where each training instance is an opportunity for the learning agents to improve their coordination. In this article, we focus on allocating training instances to learning agent pairs, i.e., pairs that improve coordination with each other, with the goal of team formation. Agents learn at different rates, and hence, the allocation of training instances affects the performance of the team formed. We build upon previous work on the Synergy Graph model, that is learned completely from data and represents agents’ capabilities and compatibility in a multi-agent team. We formally define the learning agents team formation problem, and compare it with the multi-armed bandit problem. We consider learning agent pairs that improve linearly and geometrically, i.e., the marginal improvement decreases by a constant factor. We contribute algorithms that allocate the training instances, and compare against algorithms from the multi-armed bandit problem. In our simulations, we demonstrate that our algorithms perform similarly to the bandit algorithms in the linear case, and outperform them in the geometric case. Further, we apply our model and algorithms to a multi-agent foraging problem, thus demonstrating the efficacy of our algorithms in general multi-agent problems.  相似文献   

2.
Cooperative Multi-Agent Learning: The State of the Art   总被引:5,自引:4,他引:1  
Cooperative multi-agent systems (MAS) are ones in which several agents attempt, through their interaction, to jointly solve tasks or to maximize utility. Due to the interactions among the agents, multi-agent problem complexity can rise rapidly with the number of agents or their behavioral sophistication. The challenge this presents to the task of programming solutions to MAS problems has spawned increasing interest in machine learning techniques to automate the search and optimization process. We provide a broad survey of the cooperative multi-agent learning literature. Previous surveys of this area have largely focused on issues common to specific subareas (for example, reinforcement learning, RL or robotics). In this survey we attempt to draw from multi-agent learning work in a spectrum of areas, including RL, evolutionary computation, game theory, complex systems, agent modeling, and robotics. We find that this broad view leads to a division of the work into two categories, each with its own special issues: applying a single learner to discover joint solutions to multi-agent problems (team learning), or using multiple simultaneous learners, often one per agent (concurrent learning). Additionally, we discuss direct and indirect communication in connection with learning, plus open issues in task decomposition, scalability, and adaptive dynamics. We conclude with a presentation of multi-agent learning problem domains, and a list of multi-agent learning resources.  相似文献   

3.
近年来,强化学习与自适应动态规划算法的迅猛发展及其在一系列挑战性问题(如大规模多智能体系统优化决策和最优协调控制问题)中的成功应用,使其逐渐成为人工智能、系统与控制和应用数学等领域的研究热点.鉴于此,首先简要介绍强化学习和自适应动态规划算法的基础知识和核心思想,在此基础上综述两类密切相关的算法在不同研究领域的发展历程,着重介绍其从应用于单个智能体(控制对象)序贯决策(最优控制)问题到多智能体系统序贯决策(最优协调控制)问题的发展脉络和研究进展.进一步,在简要介绍自适应动态规划算法的结构变化历程和由基于模型的离线规划到无模型的在线学习发展演进的基础上,综述自适应动态规划算法在多智能体系统最优协调控制问题中的研究进展.最后,给出多智能体强化学习算法和利用自适应动态规划求解多智能体系统最优协调控制问题研究中值得关注的一些挑战性课题.  相似文献   

4.
In this paper, we investigate Reinforcement learning (RL) in multi-agent systems (MAS) from an evolutionary dynamical perspective. Typical for a MAS is that the environment is not stationary and the Markov property is not valid. This requires agents to be adaptive. RL is a natural approach to model the learning of individual agents. These Learning algorithms are however known to be sensitive to the correct choice of parameter settings for single agent systems. This issue is more prevalent in the MAS case due to the changing interactions amongst the agents. It is largely an open question for a developer of MAS of how to design the individual agents such that, through learning, the agents as a collective arrive at good solutions. We will show that modeling RL in MAS, by taking an evolutionary game theoretic point of view, is a new and potentially successful way to guide learning agents to the most suitable solution for their task at hand. We show how evolutionary dynamics (ED) from Evolutionary Game Theory can help the developer of a MAS in good choices of parameter settings of the used RL algorithms. The ED essentially predict the equilibriums outcomes of the MAS where the agents use individual RL algorithms. More specifically, we show how the ED predict the learning trajectories of Q-Learners for iterated games. Moreover, we apply our results to (an extension of) the COllective INtelligence framework (COIN). COIN is a proved engineering approach for learning of cooperative tasks in MASs. The utilities of the agents are re-engineered to contribute to the global utility. We show how the improved results for MAS RL in COIN, and a developed extension, are predicted by the ED. Author funded by a doctoral grant of the institute for advancement of scientific technological research in Flanders (IWT).  相似文献   

5.
In this work we investigate the use of a reinforcement learning (RL) framework for the autonomous navigation of a group of mini-robots in a multi-agent collaborative environment. Each mini-robot is driven by inertial forces provided by two vibration motors that are controlled by a simple and efficient low-level speed controller. The action of the RL agent is the direction of each mini-robot, and it is based on the position of each mini-robot, the distance between them and the sign of the distance gradient between each mini-robot and the nearest one. Each mini-robot is considered a moving obstacle that must be avoided by the others. We propose suitable state space and reward function that result in an efficient collaborative RL framework. The classical and the double Q-learning algorithms are employed, where the latter is considered to learn optimal policies of mini-robots that offers more stable and reliable learning process. A simulation environment is created, using the ROS framework, that include a group of four mini-robots. The dynamic model of each mini-robot and of the vibration motors is also included. Several application scenarios are simulated and the results are presented to demonstrate the performance of the proposed approach.  相似文献   

6.
Explanation-Based Learning and Reinforcement Learning: A Unified View   总被引:3,自引:0,他引:3  
  相似文献   

7.
We address an unrelated parallel machine scheduling problem with R-learning, an average-reward reinforcement learning (RL) method. Different types of jobs dynamically arrive in independent Poisson processes. Thus the arrival time and the due date of each job are stochastic. We convert the scheduling problems into RL problems by constructing elaborate state features, actions, and the reward function. The state features and actions are defined fully utilizing prior domain knowledge. Minimizing the reward per decision time step is equivalent to minimizing the schedule objective, i.e. mean weighted tardiness. We apply an on-line R-learning algorithm with function approximation to solve the RL problems. Computational experiments demonstrate that R-learning learns an optimal or near-optimal policy in a dynamic environment from experience and outperforms four effective heuristic priority rules (i.e. WSPT, WMDD, ATC and WCOVERT) in all test problems.  相似文献   

8.
An important application of reinforcement learning (RL) is to finite-state control problems and one of the most difficult problems in learning for control is balancing the exploration/exploitation tradeoff. Existing theoretical results for RL give very little guidance on reasonable ways to perform exploration. In this paper, we examine the convergence of single-step on-policy RL algorithms for control. On-policy algorithms cannot separate exploration from learning and therefore must confront the exploration problem directly. We prove convergence results for several related on-policy algorithms with both decaying exploration and persistent exploration. We also provide examples of exploration strategies that can be followed during learning that result in convergence to both optimal values and optimal policies.  相似文献   

9.
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multi-agent tasks. We introduce a hierarchical multi-agent reinforcement learning (RL) framework, and propose a hierarchical multi-agent RL algorithm called Cooperative HRL. In this framework, agents are cooperative and homogeneous (use the same task decomposition). Learning is decentralized, with each agent learning three interrelated skills: how to perform each individual subtask, the order in which to carry them out, and how to coordinate with other agents. We define cooperative subtasks to be those subtasks in which coordination among agents significantly improves the performance of the overall task. Those levels of the hierarchy which include cooperative subtasks are called cooperation levels. A fundamental property of the proposed approach is that it allows agents to learn coordination faster by sharing information at the level of cooperative subtasks, rather than attempting to learn coordination at the level of primitive actions. We study the empirical performance of the Cooperative HRL algorithm using two testbeds: a simulated two-robot trash collection task, and a larger four-agent automated guided vehicle (AGV) scheduling problem. We compare the performance and speed of Cooperative HRL with other learning algorithms, as well as several well-known industrial AGV heuristics. We also address the issue of rational communication behavior among autonomous agents in this paper. The goal is for agents to learn both action and communication policies that together optimize the task given a communication cost. We extend the multi-agent HRL framework to include communication decisions and propose a cooperative multi-agent HRL algorithm called COM-Cooperative HRL. In this algorithm, we add a communication level to the hierarchical decomposition of the problem below each cooperation level. Before an agent makes a decision at a cooperative subtask, it decides if it is worthwhile to perform a communication action. A communication action has a certain cost and provides the agent with the actions selected by the other agents at a cooperation level. We demonstrate the efficiency of the COM-Cooperative HRL algorithm as well as the relation between the communication cost and the learned communication policy using a multi-agent taxi problem.  相似文献   

10.
This paper introduces a new multi-agent model for intelligent agents, called reinforcement learning hierarchical neuro-fuzzy multi-agent system. This class of model uses a hierarchical partitioning of the input space with a reinforcement learning algorithm to overcome limitations of previous RL methods. The main contribution of the new system is to provide a flexible and generic model for multi-agent environments. The proposed generic model can be used in several applications, including competitive and cooperative problems, with the autonomous capacity to create fuzzy rules and expand their own rule structures, extracting knowledge from the direct interaction between the agents and the environment, without any use of supervised algorithms. The proposed model was tested in three different case studies, with promising results. The tests demonstrated that the developed system attained good capacity of convergence and coordination among the autonomous intelligent agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号