共查询到20条相似文献,搜索用时 46 毫秒
1.
运输调度问题的蚁群算法研究 总被引:3,自引:0,他引:3
蚁群算法是一种用于求解复杂组合优化的较新的启发式算法.本文简述了蚁群算法的基本原理及算法模型,通过分析研究现状指出了蚁群算法在实际应用中的局限性,最后给出解决一般运输调度问题的蚁群算法,并分析了其今后的发展方向. 相似文献
2.
基于蚁群算法的智能运输调度问题的研究 总被引:2,自引:0,他引:2
在智能运输调度问题的整体法求解思路的基础上,给出了整体法求解智能运输调度问题的数学模型。针对车辆调度问题是个多项式复杂程度的非确定性(Non-determ inisti cPolynomial,NP)难题,在整体法的基础上引入了蚁群算法,给出了整体法求解智能运输调度问题的蚁群算法,并对模型进行了实验分析。 相似文献
3.
4.
交通资源规划是一种比较典型的组合优化问题,新型的仿生算法--蚁群算法,由于具有正反馈性、鲁棒性、并行计算、协同性等特点,非常适合于解决交通资源规划问题.针对出租车路径规划问题的特点以及蚁群算法在这方面应用的一些不足,提出了一种改进的蚁群算法.根据同一蚁群的信息素相互激励,不同蚁群之间信息素相互抑制的原理,该算法实现了出租车资源的合理分布. 相似文献
5.
该文将蚁群算法运用到机器人全局路径规划上,主要针对蚂蚁算法在搜索路径过程中落入障碍物陷阱而造成算法停滞的现象,提出了改进策略,同时基于对机器人所处环境的表示方法及算法中对应问题的描述和定义的研究,对相关参数进行了改进探讨。通过对算法的改进,增强了机器人的蚁群算法在复杂环境路径规划下的适应能力。 相似文献
7.
基于优化蚁群算法的机器人路径规划 总被引:8,自引:1,他引:8
研究机器人导航中的路径规划问题,运用栅格法和图论思想建立环境模型,在该模型中通过蚁群算法进行路径寻优,提出用遗传算法的思想改进已有蚁群算法,即GAA算法。仿真实验结果表明,该算法能有效地提高机器人的路径搜索速度及路径优化、路径平滑等方面的指标。 相似文献
8.
基于改进蚁群算法的机器人路径规划算法 总被引:6,自引:0,他引:6
针对传统蚁群算法搜索时间长、容易陷入局部最优解等缺点,提出了一种基于组合优化和起始目标导引函数的改进型蚁群算法.为备选结点引入优先级,采用状态转移概率和优先级的组合优化方法平衡各路径信息,避免陷入局部最优.搜索过程引入起始目标导引函数.优先搜索距起点远而距目标点近的结点.仿真结果表明,所提出的改进蚁群算法能够在较短时间内找到全局最优路径,显著提高移动式机器人的路径规划性能. 相似文献
9.
针对蚁群算法在机器人路径规划过程中出现的收敛速度慢的缺陷,提出了基于改进蚁群算法规划机器人全局路径,在栅格地图中划定优选区域,并建立新的初始信息素浓度设置模型,对各点初始信息素浓度进行差异化设置,避免寻优的盲目性,提高了算法的收敛速度。实验结果表明,改进后的蚁群算法的收敛速度明显加快,优于传统算法,表明了该算法的有效性。 相似文献
10.
随着科技发展进入互联网时代,科技园区的建设也愈发智能化、无人化,针对科技园区内的无人驾驶的通勤车路径规划问题,论文提出一种基于蚁群算法的无人驾驶的通勤车路径规划方法,首先提出了在园区中通勤车的行驶规则,将蚁群算法应用在了无人驾驶的通勤车的路径规划问题上,使用栅格法构建仿真环境模型,按照蚁群算法的算法流程,对蚁群算法进行信息初始化,设置通勤车的起点与终点,派出蚂蚁进行迭代后输出规划的最短路线,并在Matlab上进行仿真实验.经验证,论文将蚁群算法结合到无人车自动驾驶上具有实时性和鲁棒性. 相似文献
11.
为了进一步提高蚁群算法的收敛性能和搜索能力,利用遗传学的交叉和变异操作提出了一种改进的蚁群算法—G-蚁群算法,在每一代的搜索中对当前解和最优解进行交叉变异,以扩大解的搜索空间。通过对解决TSP(Traveling Salesman Problem)问题的实验表明,G-蚁群算法在收敛速度和解的全局性上有更优的性能。 相似文献
12.
基于蚁群优化的分类算法的研究 总被引:1,自引:0,他引:1
蚁群优化是人工智能领域中群体智能分支之一,已经成功地应用于旅行推销员,作业调度,路由选择等优化问题上,但用它解决数据挖掘问题还是一个新的研究课题.对Parepinelli等人提出的基于ACO分类算法进行了改进,采用了不同的启发函数和不同的分类条件选择方法,提高了分类准确率及时间效率,并进行了理论分析及实验证明. 相似文献
13.
华容 《计算机应用与软件》2007,24(8):21-22,37
在过程信号的去噪中,应用较新的盲信号神经网络分离(BSS)的方法,但盲信号分离神经网络存在容易陷入局部极小点、收敛速度慢的缺点.为此进一步采用蚁群算法(Ant Colony Algorithm ,简称ACA)优化盲信号分离神经网络权值的初值,将蚁群算法与神经网络(HJNN)结合形成AC-HJNN算法,可迅速得到最佳盲信号分离神经网络的权值矩阵,实现对过程信号的去噪.仿真实验表明:用AC-HJNN算法,可兼有神经网络广泛映射能力和蚁群算法快速全局收敛的性能. 相似文献
14.
移动边缘计算(Mobile Edge Computing,MEC)是5G的关键技术。由于MEC服务器的计算资源有限,如何对其计算资源分配以提高收益至关重要。为此,提出一种边缘服务器收益优化策略。将MEC服务器收益最大化问题建模为以服务器端任务执行次序为优化变量的最优化问题。在用户对时延和金钱偏好程度不同及子任务具有顺序执行关联性的情况下,提出基于蚁群算法的任务最优执行次序求解算法。仿真结果表明,同等条件下采用该算法获得的收益比SearchAdjust算法提高了33.6%。 相似文献
15.
一种基于蚁群算法的Snake模型与MRI分割 总被引:1,自引:0,他引:1
Snake模型以其收敛快速、精确度可达到亚像素等优点,被广泛地应用于医学图像分割,但该模型依赖于初始曲线的选取,易于收敛到局部最优且难以达到凹陷区域。为此提出一种基于蚁群算法的Snake模型,首先利用区域内灰度统计特征自动进行Snake初始化,然后在Snake演化过程中加入一向心力,使其能进入凹陷区域,最后用蚁群算法对演化结果进行优化,使其收敛到全局最优,获得最终的分割结果。实验结果表明,改进的模型在MRI分割中可以得到较好的分割结果。 相似文献
16.
一种基于蚁群算法的车辆导航系统模拟模型 总被引:1,自引:0,他引:1
本文提出一种基于蚁群算法的车辆导航系统模拟模型。通过对自然界生物行为的模拟,该系统能够在全局范围内动态确定车辆最优行驶路线,并迅速及时地向车辆提供动态的最优行车线路指引,提高交通系统的质量和效率。 相似文献
17.
基于蚁群遗传算法的中文文本分类中的特征提取 总被引:1,自引:0,他引:1
针对文本分类中特征提取准确度的问题,分析了中文文本中词长对于表征文本类别的影响,改进了传统的中文文本词条权重计算方法;由于遗传算法用于特征提取时搜索随机性强,没有方向性,故将蚁群算法应用到遗传算法的选择操作中,提出了一种蚁群算法和遗传算法相结合的特征提取方法。实验结果表明,该方法不但可以提高分类的准确率,而且可以减少分类时间,是一种有效的方法。 相似文献
18.
提出了一种静态环境下机器人路径规划的改进蚁群算法.该算法使用栅格法对机器人的工作空间进行建模,通过模拟蚂蚁的觅食行为,采用折返的迭代方式对目标进行搜索;在搜索过程中,以移动方向一定范围内最大信息素和目标引导函数作为启发式因子;此外,根据蚁群算法处理本问题时信息素散播的特点,重构了信息素的更新策略和散播方式.仿真试验结果表明,改进措施使最优路径的寻找快速而高效,即使在障碍物非常复杂的环境下,算法也能迅速地规划出一条最优路径. 相似文献
19.
可靠性优化的蚁群算法 总被引:7,自引:0,他引:7
建立了可靠性冗余优化模型,分析了各种优化方法的优缺点。采用模拟退火算法、遗传算法和蚁群算法分别解决了此问题,并通过实例,结果表明蚁群算法比较有效。 相似文献
20.
ACO算法在解NP-hard问题上虽然取得了广泛应用,但在解同一类型的不同问题时,需要更改α,β,ρ等参数的值才能取得相应问题的最优解或更接近最优解的解.通过使用最近邻居选择、信息素动态更新和局部启发搜索法对MMAS算法进行优化,得出NDLACO算法.此算法运用于解CVRP问题时,取得了较好的效果.在关于参数值的问题上取得了一定的成效,也有效地解决了蚁群算法的收敛过快和早熟、停滞问题. 相似文献