共查询到20条相似文献,搜索用时 46 毫秒
1.
针对不确定仿射非线性系统,提出一种基于非线性参数神经网络的稳定自适应控制方案,在非线性参数神经网络对不确定非线性函数的逼近误差的界未知的情形下,对网络逼近误差界进行在线自适应估计,并由Lyapunov理论证明了整个闭环控制系统的稳定性. 相似文献
2.
针对一类参数未知的周期非线性时滞系统的输出跟踪控制问题,设计了一种周期自适应迭代学习跟踪控制算法,该方法利用信号置换的思想重组系统,并在假设未知时变参数和参考输出的周期具有已知最小公倍数的情况下,将时滞以及其他不确定的时变项合并为一个周期性的辅助时变参数新变量,进而用周期自适应算法来估计该辅助量.通过构造一个Lyapunov-Krasovskii型复合能量函数,分析了系统的收敛性,证明了经过多次重复迭代学习,所有闭环信号有界且输出跟踪误差收敛,最后通过构造数值实例进行了仿真验证.理论分析和仿真结果表明,该算法简单有效,对于非线性时滞系统的跟踪问题具有很好的控制效果. 相似文献
3.
提出了一种基于模糊模型和自适应神经网络的跟踪控制方法.在系统具有未知不确定非线性特性的情况下,首先利用T_S模糊模型对系统的已知特性进行近似建模,对基于模糊模型的模糊H∞跟踪控制律进行输出跟踪控制.并在此基础上,进一步采用RBF神经网络完全自适应控制,通过在线自适应调整RBF神经网络的权重、函数中心和宽度,从而有效地消除系统的未知不确定性和模糊建模误差的影响,保证了非线性闭环系统的稳定性和系统的H∞跟踪性能,而不要求系统的不确定项和模糊建模误差满足任何匹配条件或约束.最后,将所提出的方法应用到一非线性混沌系统,仿真结果表明了所提出的方案不仅能够有效地稳定该混沌系统,而且能使系统输出跟踪期望输出. 相似文献
4.
基于BP神经网络针对一类典型的非线性系统,设计成自适应跟踪控制方案。利用神经网络在线辨识,并将辨识结果加入到控制器的设计中,不但增强了控制器对于不确定非线性系统的鲁棒性,而且使跟踪误差渐进收敛于零。仿真结果证明了这种方法的可行性。 相似文献
5.
基于线性参数神经网络的非线性系统稳定自适应控制 总被引:3,自引:0,他引:3
提出适用于多种网络类型的神经网络稳定自适应控制设计思想,在神经网络逼近误差界未知的条件下,对该误差界进行在线自适应估计,研究基于线性参数神经网络的仿射非线性系统稳定自适应控制。采和Lapunov函数方法证明系统状态变量、网络权值矢量、网络逼近误差界的在线估计及输出跟踪误差的收敛性。仿真结果表明,该方案跟踪性能良好,稳态误差较小,系统输出能快速跟踪目标信号。 相似文献
6.
针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统, 提出了一种鲁棒自适应神经网络控制算法. 本算法采用RBF神经网络(Radial based function neural network, RBF NN)逼近模型不确定性, 外界干扰和建模误差采用非线性阻尼项进行补偿, 将动态面控制(Dynamic surface control, DSC)与后推方法结合, 消除了反推法的计算膨胀问题, 降低了控制器的复杂性; 尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数, 不仅可以避免可能存在的控制器奇异值问题, 而且还能使得整个系统的在线学习参数显著减少, 与DSC方法优点结合, 使得控制算法的计算量大为减少, 便于计算机实现. 稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded, SGUUB)的, 并且跟踪误差可以收敛到原点的一个较小邻域. 最后, 计算机仿真结果表明了本文所提出控制器的有效性. 相似文献
7.
8.
9.
针对一类具有未知不确定性的非线性系统,提出了一种基于观测器的自适应不对称高斯基函数网络(AGBFN)跟踪控制方案.当系统只有输出可以测量时,通过设计观测器对其进行在线状态估计,进而构造反馈控制律和自适应控制律.所提出的完全自适应AGBFN,可以在线更新网络所有参数,克服了传统RBF网络对称性约束,提高了网络的适应性和学习能力,可以有效地对消系统未知不确定项的影响.证明了闭环系统所有误差信号最终一致有界,且系统输出较好地跟踪参考模型输出.仿真结果表明了所提出方法的有效性. 相似文献
10.
11.
Jiali Ma Shengyuan Xu Guangming Zhuang Yunliang Wei Zhengqiang Zhang 《国际强度与非线性控制杂志
》2020,30(7):2593-2610
》2020,30(7):2593-2610
In this article, the adaptive tracking control problem is considered for a class of uncertain nonlinear systems with input delay and saturation. To compensate for the effect of the input delay and saturation, a compensation system is designed. Radial basis function neural networks are directly utilized to approximate the unknown nonlinear functions. With the aid of the backstepping method, novel adaptive neural network tracking controllers are developed, which can guarantee all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the system output can track the desired signal with a small tracking error. In the end, a simulation example is given to illustrate the effectiveness of the proposed methods. 相似文献
12.
In this article, the issue of developing an adaptive event‐triggered neural control for nonlinear uncertain system with input delay is investigated. The radial basis function neural networks (RBFNNs) are adopted to approximate the uncertain terms, where the time‐varying approximation errors are considered into the approximation system. However, the RBFNNs' weight vector is extended, which may cause the computing burdens. To save network resource, the computing burden caused by the weight vector is handled with the developed adaptive control strategy. Furthermore, in order to compensate the effect of input delay, an auxiliary system is introduced into codesign. With the help of adaptive backstepping technique, an adaptive event‐triggered control approach is established. Under the proposed control approach, the effect of input delay can be compensated effectively while the considered system suffered network resource constraint, and all signals in the close‐loop system can be guarantee bounded. Finally, two simulation examples are given to verify the proposed control method's effectiveness. 相似文献
13.
This work presents a nonlinear adaptive dynamic surface air speed and a flight path angle control design procedure for the longitudinal dynamics of a generic hypersonic flight vehicle. The proposed design scheme takes into account the magnitude, rate, and bandwidth constraints on the actuator signals. A new approach is used to enhance tracking performance and avoid a large initial control signal. The uncertain nonlinear functions in the flight vehicle model are approximated by using radial basis function neural networks. A detailed stability analysis of the designed controllers shows that all the signals of the closed‐loop system are uniformly ultimately bounded. The robust performance of the design scheme is verified through numerical simulations of the flight vehicle model for various parameter variation test cases. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
14.
15.
利用神经网络和滑模控制,研究带有饱和输入的一类非线性系统。为了便于问题分析,引入饱和约束模型输出与控制输入的差值这个变量,分5种情况讨论,求得神经网络权值的在线调节律,得到保证闭环系统稳定的控制律。利用Lyapunov函数,证明了闭环系统的稳定性;仿真实验说明了算法的有效性。 相似文献
16.
对于一类具有三角结构的单输入单输出的不确定非线性系统, 用反步法(backstepping)和动态面控制方法(dynamic surface control technique)设计了一种使用神经网络补偿未知非线性的L2--增益鲁棒控制器. 控制器设计中没有直接解HJI(Hamilton-Jacobi-Isaac)不等式. 合理的选择了L2--增益性能指标, 将被控系统各个状态变量的跟踪误差和神经网络各权值的跟踪误差看作整个控制系统的各个状态变量, 并用Lyapunov定理和HJI不等式证明了使用提出的控制器后, 这些状态变量具有小于等于事先规定的正实数γ的L2--增益. 当系统的扰动信号为零向量时, 提出的控制器在原点是大范围渐近稳定的. 仿真研究结果表明所提出的控制器具有很好的跟踪性能和很强的鲁棒性. 相似文献
17.
研究带有不确定扰动的一阶非线性多智能体系统的分布式快速有限时间二分跟踪一致性问题,其中领导者具有所有跟随者都未知的外部输入.基于全局有限时间稳定性理论、代数图论和变量变换,提出并分析一种静态分布式非光滑协议,证明在含扰动的非线性多智能体系统中,所有跟随者能在有限时间内快速地跟踪上时变的期望状态.该协议的局限性是控制增益会依赖于某些全局信息,如Laplacian矩阵的谱.为了消除这一限制,进一步设计一种自适应分布式协议.理论分析表明,所考虑的多智能体系统在控制增益不依赖于全局信息的前提下同样能实现快速有限时间二分跟踪一致性.最后通过两个仿真实例验证所提算法的可行性和有效性. 相似文献
18.
针对一类控制增益函数及符号均未知的不确定非线性系统,基于反推滑模设计方法,提出一种鲁棒自适应神经网络控制方案.结合Nussbaum增益设计技术和神经网络逼近能力,取消了控制增益函数及符号已知的条件,应用积分型Lyapunov函数避免了控制器奇异性问题,并通过引入神经网络逼近误差和不确定干扰上界的自适应补偿项消除了建模误差和不确定干扰的影响.理论分析证明了闭环系统所有信号半全局一致终结有界,仿真结果验证了该方法的有效性. 相似文献
19.
Qichao Zhao 《Asian journal of control》2014,16(2):589-601
This paper is aimed at exploring dynamic surface control (DSC) for a class of uncertain nonlinear systems in strict‐feedback form with time delays. Combining the Finite Covering Lemma (Heine‐Borel Theorem) with neural networks, a novel method is proposed to approximate time delay terms, which leads to the abandonment of traditional Lyapunov‐Krasovskii functionals. Then, a surface error modification and an initialization technique are proposed to guarantee the tracking performance. Moreover, by applying a newly‐developed neural network based adaptive control technique, it is shown that the update law for the proposed DSC scheme is needed only at the last design step with only one parameter being estimated online, which significantly reduces the computational burden, compared with current DSC schemes. Simulation results are presented to illustrate the efficiency of the proposed scheme. 相似文献
20.
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz c... 相似文献