首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 159 毫秒
1.
《遥感技术与应用》2017,32(4):606-614
In this work,a novel soil moisture data assimilation scheme was developed,which was based land surface model (CoLM,Common Land Model),microwave radioactive transfer model (L MEB,L band Microwave Emission of the Biosphere),and data assimilation algorithm (EnKS,Ensemble Kalman Smoother).This scheme is used to improve the estimation of soil moisture profile by jointly assimilatingMODIS land surface temperature and airborne L band passive microwave brightness temperature.The ground based data observed at DAMAN superstation,which is located at Yingke oasis desert area in the middle stream of the Heihe River Basin,are used to conduct this experiment and validate assimilation results.Three LAI products are used to analyze the influence of LAI on soil temperature.Three assimilation experiments are also designed in this work,including assimilation of MODIS LST,assimilation of microwave brightness temperature,and assimilation of MODIS LST and microwave brightness temperature.The results show that the uncertainties in LAI influence significantly soil temperature simulations in different soil layers.MODIS LAI product is seriously underestimated in this study area,which results soil temperature overestimation about 4~6 K.Three assimilation schemes can improve soil moisture estimations to different extend.Joint assimilation of MODIS LST and microwave brightness temperature achieved the best performance,which can reduce the RMSE of soil moisture to 31%~53%.  相似文献   

2.
In this article, land surface temperature (LST) and sensible heat flux (H) data assimilation schemes were developed separately using the ensemble Kalman filter (EnKF) and the common land model (CoLM). Surface measurements of ground temperature, H, and latent heat flux (LE) collected at the Yucheng (longitude: 116° 36′ E; latitude: 36° 57′ N) and Arou (longitude: 100° 27′ E; latitude: 38° 02′ N) experimental stations were compared with the predictions by assimilating different observation sources into the CoLM. The results showed that both LST and H data assimilation schemes could improve the estimation of ground temperature and H. The root mean square error (RMSE) compared between the predictions and in situ measurements decreased more significantly with the assimilation of values of H measured by a large aperture scintillometer (LAS). Assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) LST only slightly improved the predictions of H and ground temperature. Daytime to night-time comparison results using both assimilation schemes also indicated that accurately quantifying model, prediction, and observation error would improve the efficiency of the assimilation systems. The newly developed land data assimilation schemes have proved to be a feasible and practical method to improve the predictions of heat fluxes and ground temperature from CoLM. Moreover, integrating multisource data (LAS and MODIS LST) simultaneously into the land surface model is believed to result in an efficient and robust way to improve the accuracy of model predictions from a theoretical point of view.  相似文献   

3.
Model-data fusion offers considerable promise in remote sensing for improved state and parameter estimation particularly when applied to multi-sensor image products. This paper demonstrates the application of a ‘multiple constraints’ model-data fusion (MCMDF) scheme to integrating AMSR-E soil moisture content (SMC) and MODIS land surface temperature (LST) data products with a coupled biophysical model of surface moisture and energy budgets for savannas of northern Australia. The focus in this paper is on the methods, difficulties and error sources encountered in developing an MCMDF scheme and enhancements for future schemes. An important aspect of the MCMDF approach emphasized here is the identification of inconsistencies between model and data, and among data sets.The MCMDF scheme was able to identify that an inconsistency existed between AMSR-E SMC and LST data when combined with the coupled SEB-MRT model. For the example presented, an optimal fit to both remote sensing data sets together resulted in an 84% increase in predicted SMC and 0.06% increase for LST relative to the fit to each data set separately. That is the model predicted on average cooler LST's (∼ 1.7 K) and wetter SMC values (∼ 0.04 g cm− 3) than the satellite image products. In this instance we found that the AMSR-E SMC data on their own were poor constraints on the model. Incorporating LST data via the MCMDF scheme ameliorated deficiencies in the SMC data and resulted in enhanced characterization of the land surface soil moisture and energy balance based on comparison with the MODIS evapotranspiration (ET) product of Mu et al. [Mu, Q., Heinsch, F.A, Zhao, M. and Running, S.W. (in press), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment.]. Canopy conductance, gC, and latent heat flux, λE, from the MODIS ET product were in good agreement with RMSEs for gC = 0.5 mm s− 1 and for λE = 18 W m− 2, respectively. Differences were attributable to a greater canopy-to-air vapor pressure gradient in the MCMDF approach obtained from a more realistic partitioning of soil surface and canopy temperatures.  相似文献   

4.
This paper compares three remote sensing-based models for estimating evapotranspiration (ET), namely the Surface Energy Balance System (SEBS), the Two-Source Energy Balance (TSEB) model, and the surface temperature-vegetation index Triangle (TVT). The models used as input MODIS/TERRA products and ground measurements collected during the wheat and corn growth period in a subhumid climate at a measurement station in Yucheng, China. MODIS land surface temperature (LST) and leaf area index (LAI) products, corrected using ground-truth observations, were used in the three models. The TSEB model output of sensible (H) and latent (LE) heat fluxes were in good agreement with Large Aperture Scintillometer (LAS)-measured H and LE derived by residual (RMSD < 45 W/m2). Reasonable agreement was also obtained with the SEBS model output yielding RMSD for H of ~ 40 W/m2 and LE ~ 55 W/m2. However, the TVT model output resulted in poor agreement with the LAS-estimated H and LE with RMSD-values > 110 W/m2. Using the uncorrected MODIS LST and LAI products resulted in a deterioration of the agreement in H and LE with LAS-estimated values for both the TSEB and SEBS models, whereas TVT performance improved marginally. These results indicate that the TSEB model yielded the closest agreement with the LAS-estimated fluxes using either the corrected or uncorrected MODIS inputs (LST and LAI). The SEBS model also computed reasonable H and LE values but was significantly more sensitive to errors in MODIS LST and LAI inputs than the TSEB model. In the TVT model, output of H and LE was unacceptable in either scenario of MODIS input which was attributable to errors in selection of the dry edge. With the TVT method, accurate determination of the dry edge end member is critical in regional ET estimation, but for humid and subhumid regions this end member may often be quite difficult to identify or encompass within a satellite scene.  相似文献   

5.
An integrated data assimilation system is implemented over the Red-Arkansas river basin to estimate the regional scale terrestrial water cycle driven by multiple satellite remote sensing data. These satellite products include the Tropical Rainfall Measurement Mission (TRMM), TRMM Microwave Imager (TMI), and Moderate Resolution Imaging Spectroradiometer (MODIS). Also, a number of previously developed assimilation techniques, including the ensemble Kalman filter (EnKF), the particle filter (PF), the water balance constrainer, and the copula error model, and as well as physically based models, including the Variable Infiltration Capacity (VIC), the Land Surface Microwave Emission Model (LSMEM), and the Surface Energy Balance System (SEBS), are tested in the water budget estimation experiments. This remote sensing based water budget estimation study is evaluated using ground observations driven model simulations. It is found that the land surface model driven by the bias-corrected TRMM rainfall produces reasonable water cycle states and fluxes, and the estimates are moderately improved by assimilating TMI 10.67 GHz microwave brightness temperature measurements that provides information on the surface soil moisture state, while it remains challenging to improve the results by assimilating evapotranspiration estimated from satellite-based measurements.  相似文献   

6.
In this study, we assessed the accuracy of the MODIS (Moderate Resolution Imaging Spectroradiometer) GPP (gross primary productivity) Collections 4.5, 4.8 and 5 along with Leaf Area Index (LAI), fraction of absorbed Photosynthetically Active Radiation (fPAR), light use efficiency (LUE) and meteorological variables that are used to estimate GPP for a northern Australian savanna site. Results of this study indicated that the MODIS products captured the seasonal variation in GPP, LAI and fPAR well. Using the index of agreement (IOA), it was found that Collections 4.5 and 4.8 (IOA 0.89 respectively) agreed reasonably well with flux tower measurements between 2001 and 2006. It was also found that MODIS Collection 4.5 predicted the dry season GPP well (Relative Predictive Error (RPE) 4.17%, IOA 0.72 and Root Mean Square Error (RMSE) of 1.05 g C m− 2 day− 1), whilst Collection 4.8 performed better in capturing wet season dynamics (RPE 1.11%, IOA 0.80 and RMSE of 0.91 g C m− 2 day− 1). Although the wet season magnitude of GPP was predicted well by Collection 4.8, an examination of the inputs to the GPP algorithm revealed that MODIS fPAR was too high, but this was compensated by PAR and LUE that was too low. Although LAI and fPAR estimated by Collection 5 were more accurate, GPP for this Collection resulted in a much lower value (RPE 25%) due to errors in other factors. Recalculation of MODIS GPP using site specific input parameters indicated that MODIS fPAR was the main reason for the differences between MODIS and tower derived GPP followed by LUE and meteorological inputs. GPP calculated using all site specific values agreed very well with tower data on an annual basis (IOA 0.94, RPE 6.06% and RMSE 0.83 g C m− 2 day− 1) but the early initiation of the growing season calculated by the MODIS algorithm was improved when the vapor pressure deficit (VPD) function was replaced with a soil water deficit function. The results of this study however, reinforce previous findings in water limited regions, like Australia, and incorporation of soil moisture in a LUE model is needed to accurately estimate the productivity.  相似文献   

7.
The MODIS land science team produces a number of standard products, including land cover and leaf area index (LAI). Critical to the success of MODIS and other sensor products is an independent evaluation of product quality. In that context, we describe a study using field data and Landsat ETM+ to map land cover and LAI at four 49-km2 sites in North America containing agricultural cropland (AGRO), prairie grassland (KONZ), boreal needleleaf forest, and temperate mixed forest. The purpose was to: (1) develop accurate maps of land cover, based on the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification scheme; (2) derive continuous surfaces of LAI that capture the mean and variability of the LAI field measurements; and (3) conduct initial MODIS validation exercises to assess the quality of early (i.e., provisional) MODIS products. ETM+ land cover maps varied in overall accuracy from 81% to 95%. The boreal forest was the most spatially complex, had the greatest number of classes, and the lowest accuracy. The intensive agricultural cropland had the simplest spatial structure, the least number of classes, and the highest overall accuracy. At each site, mapped LAI patterns generally followed patterns of land cover across the site. Predicted versus observed LAI indicated a high degree of correspondence between field-based measures and ETM+ predictions of LAI. Direct comparisons of ETM+ land cover maps with Collection 3 MODIS cover maps revealed several important distinctions and similarities. One obvious difference was associated with image/map resolution. ETM+ captured much of the spatial complexity of land cover at the sites. In contrast, the relatively coarse resolution of MODIS did not allow for that level of spatial detail. Over the extent of all sites, the greatest difference was an overprediction by MODIS of evergreen needleleaf forest cover at the boreal forest site, which consisted largely of open shrubland, woody savanna, and savanna. At the agricultural, temperate mixed forest, and prairie grassland sites, ETM+ and MODIS cover estimates were similar. Collection 3 MODIS-based LAI estimates were considerably higher (up to 4 m2 m−2) than those based on ETM+ LAI at each site. There are numerous probable reasons for this, the most important being the algorithms' sensitivity to MODIS reflectance calibration, its use of a prelaunch AVHRR-based land cover map, and its apparent reliance on mainly red and near-IR reflectance. Samples of Collection 4 LAI products were examined and found to consist of significantly improved LAI predictions for KONZ, and to some extent for AGRO, but not for the other two sites. In this study, we demonstrate that MODIS reflectance data are highly correlated with LAI across three study sites, with relationships increasing in strength from 500 to 1000 m spatial resolution, when shortwave-infrared bands are included.  相似文献   

8.
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.  相似文献   

9.
Land surface and climate modelling requires continuous and consistent Leaf Area Index (LAI). High spatiotemporal resolution and long-time record data are more in demand nowadays and will continue to be in the future. MODIS LAI products meet these requirements to some degree. However, due to the presence of cloud and seasonal snow cover, the instrument problems and the uncertainties of retrieval algorithm, the current MODIS LAI products are spatially and temporally discontinuous and inconsistent, which limits their application in land surface and climate modelling. To improve the MODIS LAI products on a global scale, we considered the characteristics of the MODIS LAI data and made the best use of quality control (QC) information, and developed an integrated two-step method to derive the improved MODIS LAI products effectively and efficiently on a global scale. First, we used the modified temporal spatial filter (mTSF) method taking advantage of background values and QC information at each pixel to do a simple data assimilation for relatively low quality data. Then we applied the post processing-TIMESAT (A software package to analyze time-series of satellite sensor data) Savitzky-Golay (SG) filter to get the final result. We implemented the method to 10 years of the MODIS Collection 5 LAI data. In comparison with the LAI reference maps and the MODIS LAI data, our results showed that the improved MODIS LAI data are closer to the LAI reference maps in magnitude and also more continuous and consistent in both time-series and spatial domains. In addition, simple statistics were used to evaluate the differences between the MODIS LAI and the improved MODIS LAI.  相似文献   

10.
The results of the first consecutive 12 months of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) global burned area product are presented. Total annual and monthly area burned statistics and missing data statistics are reported at global and continental scale and with respect to different land cover classes. Globally the total area burned labeled by the MODIS burned area product is 3.66 × 106 km2 for July 2001 to June 2002 while the MODIS active fire product detected for the same period a total of 2.78 × 106 km2, i.e., 24% less than the area labeled by the burned area product. A spatio-temporal correlation analysis of the two MODIS fire products stratified globally for pre-fire leaf area index (LAI) and percent tree cover ranges indicate that for low percent tree cover and LAI, the MODIS burned area product defines a greater proportion of the landscape as burned than the active fire product; and with increasing tree cover (> 60%) and LAI (> 5) the MODIS active fire product defines a relatively greater proportion. This pattern is generally observed in product comparisons stratified with respect to land cover. Globally, the burned area product reports a smaller amount of area burned than the active fire product in croplands and evergreen forest and deciduous needleleaf forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount of area burned for the non-forest classes. The reasons for these product differences are discussed in terms of environmental spatio-temporal fire characteristics and remote sensing factors, and highlight the planning needs for MODIS burned area product validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号