首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
推广了适用于分数阶系统控制的随机分数阶最优控制策略,提出了高斯白噪声激励下多自由度拟不可积哈密顿系统以响应最小化为目标的随机分数阶最优控制策略.首先,应用拟不可积哈密顿系统随机平均法,将受控系统简化为关于能量的部分平均伊藤方程.然后,将控制性能指标中关于控制力的部分表示为分数阶形式,结合随机动态规划原理,建立并求解部分平均系统的无界遍历控制的随机动态规划方程,获得了随机分数阶最优控制律.最后,采用一个算例验证了随机分数阶控制策略的控制效果和控制效率.研究表明,随机分数阶最优控制策略对传统的整数阶随机动力学系统同样适用,能比传统的整数阶控制策略取得更好的控制效果.另外,随着激励强度增加,整数阶控制策略的控制效率显著降低;而分数阶控制策略的控制效率虽比整数阶控制策略的控制效率略低,但随着激励强度的增加,分数阶控制策略的控制效率缓慢上升并趋于平稳,可以有效地缓解控制效率与控制效果之间的矛盾.  相似文献   

2.
The robustness of non-linear stochastic optimal control for quasi-Hamiltonian systems with uncertain parameters is studied. Based on the independence of uncertain parameters and stochastic excitations, the non-linear stochastic optimal control for the nominal quasi-Hamiltonian system with average-value parameters is first obtained by using the stochastic averaging method and stochastic dynamical programming principle. Then, the means and standard deviations of root-mean-square responses, control effectiveness and control efficiency for the uncertain quasi-Hamiltonian system are calculated by using the stochastic averaging method and the probabilistic analysis. By introducing the sensitivity of the variation coefficients of controlled root-mean-square responses, control effectiveness and control efficiency to those of uncertain parameters, the robustness of the non-linear stochastic optimal control is evaluated. Two examples are given to illustrate the proposed control procedure and its robustness.  相似文献   

3.
研究随机扰动下简单电力系统的可靠度反馈最大化.应用拟不可积哈密顿系统随机平均法和随机动态规划原理,导出以可靠度最大为目标的动态规划方程和以平均首次穿越时间最长为目标的动态规划方程.通过分别求解相应的动态规划方程,得到最优控制律,受控与未控系统的条件可靠性函数及平均首次穿越时间.最后应用Monte Carlo模拟验证结果的准确性.  相似文献   

4.
本文提出了不确定拟哈密顿系统、基于随机平均法、随机极大值原理和随机微分对策理论的一种随机极大极小最优控制策略.首先,运用拟哈密顿系统的随机平均法,将系统状态从速度和位移的快变量形式转化为能量的慢变量形式,得到部分平均的It随机微分方程;其次,给定控制性能指标,对于不确定拟哈密顿系统的随机最优控制,根据随机微分对策理论,将其转化为一个极小极大控制问题;再根据随机极大值原理,建立关于系统与伴随过程的前向-后向随机微分方程,随机最优控制表达为哈密顿控制函数的极大极小条件,由此得到最坏情形下的扰动参数与极大极小最优控制;然后,将最坏扰动参数与最优控制代入部分平均的It随机微分方程并完成平均,求解与完全平均的It随机微分方程相应的Fokker-Planck-Kolmogorov(FPK)方程,可得受控系统的响应量并计算控制效果;最后,将上述不确定拟哈密顿系统的随机最优控制策略应用于一个两自由度非线性系统,通过数值结果说明该随机极大极小控制策略的控制效果.  相似文献   

5.
A stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems is proposed based on the stochastic averaging method, stochastic maximum principle and stochastic differential game theory. First, the partially completed averaged Itô stochastic differential equations are derived from a given system by using the stochastic averaging method for quasi-Hamiltonian systems with uncertain parameters. Then, the stochastic Hamiltonian system for minimax optimal control with a given performance index is established based on the stochastic maximum principle. The worst disturbances are determined by minimizing the Hamiltonian function, and the worst-case optimal controls are obtained by maximizing the minimal Hamiltonian function. The differential equation for adjoint process as a function of system energy is derived from the adjoint equation by using the Itô differential rule. Finally, two examples of controlled uncertain quasi-Hamiltonian systems are worked out to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

6.
A feedback control strategy is designed to asymptotically stabilize a multi‐degree‐of‐freedom (DOF) nonlinear stochastic systems undergoing Markovian jumps. First, a class of hybrid nonlinear stochastic systems with Markovian jumps is reduced to a one‐dimensional averaged Itô stochastic differential equation for controlled total energy. Second, the optimal control law is deduced by applying the dynamical programming principle to the ergodic control problem of the averaged systems with an undetermined cost function. Third, the cost function is determined by the demand of stabilizing the averaged systems. A Lyapunov exponent is introduced to analyze approximately the asymptotic stability with probability one of the originally controlled systems. To illustrate the application of the present method, an example of stochastically excited two coupled nonlinear oscillators with Markovian jumps is worked out in detail.  相似文献   

7.
一种基于随机平均的最优时滞控制方法   总被引:1,自引:1,他引:0  
基于时滞系统的随机平均法与随机动态规划原理,提出一种非线性系统的随机最优时滞控制方法.先应用时滞随机平均法,将非线性系统的随机最优时滞控制问题变换成非时滞的最优控制问题;再根据随机动态规划原理,建立其动态规划方程;由此确定最优时滞控制律;最后,通过一个例子说明该时滞控制方法的控制效果.  相似文献   

8.
In this paper, an observer‐based control approach is proposed for uncertain stochastic nonlinear discrete‐time systems with input constraints. The widely used extended Kalman filter (EKF) is well known to be inadequate for estimating the states of uncertain nonlinear dynamical systems with strong nonlinearities especially if the time horizon of the estimation process is relatively long. Instead, a modified version of the EKF with improved stability and robustness is proposed for estimating the states of such systems. A constrained observer‐based controller is then developed using the state‐dependent Riccati equation approach. Rigorous analysis of the stability of the developed stochastically controlled system is presented. The developed approach is applied to control the performance of a synchronous generator connected to an infinite bus and chaos in permanent magnet synchronous motor. Simulation results of the synchronous generator show that the estimated states resulting from the proposed estimator are stable, whereas those resulting from the EKF diverge. Moreover, satisfactory performance is achieved by applying the developed observer‐based control strategy on the two practical problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In the present paper, an innovative procedure for designing the feedback control of multi-degree-of-freedom (MDOF) nonlinear stochastic systems to target a specified stationary probability density function (SPDF) is proposed based on the technique for obtaining the exact stationary solutions of the dissipated Hamiltonian systems. First, the control problem is formulated as a controlled, dissipated Hamiltonian system together with a target SPDF. Then the controlled forces are split into a conservative part and a dissipative part. The conservative control forces are designed to make the controlled system and the target SPDF have the same Hamiltonian structure (mainly the integrability and resonance). The dissipative control forces are determined so that the target SPDF is the exact stationary solution of the controlled system. Five cases, i.e., non-integrable Hamiltonian systems, integrable and non-resonant Hamiltonian systems, integrable and resonant Hamiltonian systems, partially integrable and non-resonant Hamiltonian systems, and partially integrable and resonant Hamiltonian systems, are treated respectively. A method for proving that the transient solution of the controlled system approaches the target SPDF as t is introduced. Finally, an example is given to illustrate the efficacy of the proposed design procedure.  相似文献   

10.
This paper is concerned with the problem of delay‐distribution–dependent robust exponential stability for uncertain stochastic systems with probabilistic time‐varying delays. Firstly, inspired by a class of networked systems with quantization and packet losses, we study the stabilization problem for a class of network‐based uncertain stochastic systems with probabilistic time‐varying delays. Secondly, an equivalent model of the resulting closed‐loop network‐based uncertain stochastic system is constructed. Different from the previous works, the proposed equivalent system model enables the controller design of the network‐based uncertain stochastic systems to enjoy the advantage of probability distribution characteristic of packet losses. Thirdly, by applying the Lyapunov‐Krasovskii functional approach and the stochastic stability theory, delay‐distribution–dependent robust exponential mean‐square stability criteria are derived, and the sufficient conditions for the design of the delay‐distribution–dependent controller are then proposed to guarantee the stability of the resulting system. Finally, a case study is given to show the effectiveness of the results derived. Moreover, the allowable upper bound of consecutive packet losses will be larger in the case that the probability distribution characteristic of packet losses is taken into consideration.  相似文献   

11.
This paper mainly studies the locally/globally asymptotic stability and stabilization in probability for nonlinear discrete‐time stochastic systems. Firstly, for more general stochastic difference systems, two very useful results on locally and globally asymptotic stability in probability are obtained, which can be viewed as the discrete versions of continuous‐time Itô systems. Then, for a class of quasi‐linear discrete‐time stochastic control systems, both state‐ and output‐feedback asymptotic stabilization are studied, for which, sufficient conditions are presented in terms of linear matrix inequalities. Two simulation examples are given to illustrate the effectiveness of our main results.  相似文献   

12.
A stochastic optimal control strategy for quasi-Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method and stochastic dynamical programming principle. First, the partially completed averaged Itô stochastic differential equations for the energy processes of individual degree of freedom are derived by using the stochastic averaging method for quasi-Hamiltonian systems. Then, the dynamical programming equation is established by applying the stochastic dynamical programming principle to the partially completed averaged Itô equations with a performance index. The saturated optimal control consisting of unbounded optimal control and bounded bang-bang control is determined by solving the dynamical programming equation. Numerical results show that the proposed control strategy significantly improves the control efficiency and chattering attenuation of the corresponding bang-bang control.  相似文献   

13.
In this paper, the problem of robust sampled‐data control for Itô stochastic Markovian jump systems (Itô SMJSs) with state delay is investigated. Using parameters‐dependent Lyapunov functionals and some stochastic equations, we give stochastic sufficient stability criteria for polytopic uncertain Itô SMJSs. As a corollary, stochastic sufficient stability criteria are given for nominal Itô SMJSs. For this two cases of Itô SMJSs, based on the obtained stochastic stability criteria, their time‐independent sampled‐data controllers are designed, respectively. Then, for designing a time‐dependent sampled‐data controller for Itô SMJSs, a parameters‐dependent time‐scheduled Lyapunov functional is developed. New stochastic sufficient stability criteria are obtained for polytopic uncertain Itô SMJSs and nominal Itô SMJSs. Furthermore, their time‐dependent sampled‐data controllers are designed, respectively. Lastly, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

14.
The robust exponential stability in mean square for a class of linear stochastic uncertain control systems is dealt with. For the uncertain stochastic systems ,we have designed an optimal controller which guarantees the exponential stability of the system. Actually ,we employed Lyapunov function approach and the stochastic algebraic Riccati equation (SARE) to have shown the robustness of the linear quadratic (LQ) optimal control law. And the algebraic criteria for the exponential stability on the linear stochastic uncertain closed- loop systems are given.  相似文献   

15.
This paper investigates the simultaneous stabilization of a collection of continuous single‐input non‐linear stochastic systems, with coefficients that are not necessarily locally Lipschitz. A sufficient condition for the existence of a continuous simultaneously stabilizing feedback control is proposed — it is based on the generalized stochastic Lyapunov theorem and on the technique of stochastic control Lyapunov functions. This condition is also necessary, provided that the system's coefficients satisfy some regularity conditions. Moreover, the proposed feedback can be chosen to be bounded under the assumption that appropriate control Lyapunov functions are known. All the proposed simultaneously stabilizing state feedback controllers are explicitly constructed. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

16.
The robust exponential stability in mean square for a class of linear stochastic uncertain control systems is dealt with. For the uncertain stochastic systems, we have designed an optimal controller which guarantees the exponential stability of the system. Actually, we employed Lyapunov fimction approach and the stochastic algebraic Riccati equation (SARE) to have shown the robusmess of the linear quadratic(LQ) optimal control law.And the algebraic criteria for the exponential stability on the linear stochastic uncertain closed-loop systems are given.  相似文献   

17.
In this paper, we apply the active disturbance rejection control approach to output‐feedback stabilization for uncertain lower triangular nonlinear systems with stochastic inverse dynamics and stochastic disturbance. We first design an extended state observer (ESO) to estimate both unmeasured states and stochastic total disturbance that includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then compensated in the feedback loop. The constant gain and the time‐varying gain are used in ESO design separately. The mean square practical stability for the closed‐loop system with constant gain ESO and the mean square asymptotic stability with time‐varying gain ESO are developed, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output‐feedback control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the problem of finite‐time stabilization for a class of low‐order stochastic upper‐triangular nonlinear systems corrupted by unknown control coefficients. Unlike the relevant schemes, the control strategy draws into a dominate gain to cope with the deteriorative effects of both uncertain nonlinearities and unknown control coefficients without using traditional adaptive compensation method. Then, a state feedback controller is constructed by the adding a power integrator method and modified homogeneous domination approach, to ensure the finite‐time stability of the closed‐loop system. Finally, the effectiveness of proposed control strategy has been demonstrated by a simulation example.  相似文献   

19.
LaSalle theorem (also known as the LaSalle invariance principle) plays an essential role in the systems and control theory. Recently, it has been extensively studied and developed for various types of one‐dimensional (1‐D) systems including deterministic and stochastic 1‐D systems in discrete‐ and continuous‐time domains. For two‐dimensional (2‐D) systems, such studies have received considerably less attention. In this article, based on discrete martingale theory, a LaSalle‐type theorem is first developed for a class of discrete‐time nonlinear stochastic 2‐D systems described by a Roesser model. The proposed result can be regarded as an extension of stochastic Lyapunov‐like theorem, which guarantees the convergence almost surely of system state trajectories. Extensions to the problem of optimal guaranteed cost control of nonlinear stochastic 2‐D systems are also presented. The proposed schemes are then utilized to derive tractable synthesis conditions of a suboptimal state‐feedback controller for uncertain 2‐D systems with multiplicative stochastic noises. The effectiveness of the obtained results is illustrated by given numerical examples and simulations.  相似文献   

20.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号