首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time‐varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay‐independent output feedback controller making the closed‐loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high‐gain observer in combination with a linear dynamic high‐gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

3.
This article studied the global output feedback regulation problem for a class of uncertain nonlinear time delay systems subject to unknown measurement faults on sensors. Different from the existing works, we consider the unknown time‐varying delays on the system states and relax their conservative condition on nonlinear functions. By introducing two novel time‐varying gains, a new global output feedback regulation algorithm is proposed, which ensures control parameters can be chosen flexibly. The proposed linear‐like controller is independent of the unknown time‐varying delays. Moreover, it has a simple structure, which is convenient for the implementation in practice. Based on the Lyapunov stability theory, it is strictly proved that all signals of the resulting closed‐loop system are globally bounded with the designed controller. Finally, a simulation example is presented to illustrate the effectiveness of the proposed output feedback regulation algorithm.  相似文献   

4.
Even in the presence of uncertainty in both state and output equations, we prove that global asymptotic stabilization is still possible by output feedback for a family of uncertain nonlinear systems dominated by a triangular system with a polynomial output‐dependent growth rate. In contrast to the linear growth requirement in the recent work the nonlinear perturbations in this paper are allowed to satisfy a linear growth condition with a polynomial output‐dependent rate. To handle simultaneously the polynomial nonlinearities and unknown parameter in the system output, we propose a high‐gain estimator with a dynamic gain that is updated online through a Riccati‐type dynamic equation. Then, an estimator‐based controller is designed by a recursive algorithm that makes it possible to assign the controller gains step by step. The globally stabilizing output‐feedback controller developed in this paper is robust with respect to uncertainties in the system dynamics and output equations.  相似文献   

5.
The problem of global asymptotic tracking by output feedback is studied for a class of nonminimum‐phase nonlinear systems in output feedback form. It is proved that the problem is solvable by an n‐dimensional output feedback controller under the two conditions: (a) the nonminimum‐phase nonlinear system can be rendered minimum‐phase by a virtual output; and (b) the internal dynamics of the nonlinear system driven by a desired signal and its derivatives has a bounded solution trajectory. With the help of a new coordinate transformation, a constructive method is presented for the design of a dynamic output tracking controller. An example is given to validate the proposed output feedback tracking control scheme.  相似文献   

6.
This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.  相似文献   

7.
This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.  相似文献   

8.
Hao Lei  Wei Lin   《Systems & Control Letters》2007,56(7-8):529-537
The problem of global state regulation via output feedback is investigated for uncertain nonlinear systems. The class of uncertain systems under consideration is assumed to be dominated by a bounding system which is linear growth in the unmeasurable states but can be a polynomial function of the system output, with unknown growth rates. To achieve global state regulation in the presence of parametric uncertainty, we propose a non-identifier based output feedback control scheme by employing the idea of universal control integrated with the design of a linear high-gain observer, whose gains are composed of two components, both of them are not constant and need to be dynamically updated. In particular, we explicitly design a universal output feedback controller which globally regulates all the states of the uncertain system while maintaining global boundedness of the closed-loop system.  相似文献   

9.
An adaptive output feedback control approach is studied for a class of uncertain nonlinear systems in the parametric output feedback form. Unlike the previous works on the adaptive output feedback control, the problem of ‘explosion of complexity’ of the controller in the conventional backstepping design is overcome in this paper by introducing the dynamic surface control (DSC) technique. In the previous schemes for the DSC technique, the time derivative for the virtual controllers is assumed to be bounded. In this paper, this assumption is removed. It can be proven that the resulting closed‐loop system is stable in the sense that all the signals are semi‐global uniformly ultimately bounded and the system output tracks the reference signal to a bounded compact set. A simulation example is given to verify the effectiveness of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a new approach for the design of output feedback robust model predictive control (OFRMPC) with a dynamic output feedback controller (DOFC) for linear uncertain systems subject to input and output constraints. The main contribution of this work is the full on‐line synthesis of the DOFC as part of a convex optimization problem, with constraint satisfaction and asymptotic stability guarantees. A numerical example is employed to illustrate the advantage of the proposed control law, as compared with another OFRMPC strategy with partial DOFC synthesis. The present paper also points out an inconsistency in the mathematical development of a previous related OFRMPC formulation (‘improved dynamic output feedback RMPC for linear uncertain systems with input constraints’). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper discusses the problem of global sampled-data output feedback stabilisation for a class of nonlinear systems whose output function is unknown. A systematic design scheme is developed to construct a linear output feedback control law in sampled-data form. An explicit formula for the maximum allowable sampling period is computed to guarantee global stability of the uncertain nonlinear systems under the proposed controller with appropriate gains. Two examples are given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

12.
The dynamic output feedback control problem with output quantizer is investigated for a class of nonlinear uncertain Takagi‐Sugeno (T‐S) fuzzy systems with multiple time‐varying input delays and unmatched disturbances. The T‐S fuzzy model is employed to approximate the nonlinear uncertain system, and the output space is partitioned into operating regions and interpolation regions based on the structural information in the fuzzy rules. The output quantizer is introduced for the controller design, and the dynamic output feedback controller with output quantizer is constructed based on the T‐S fuzzy model. Stability conditions in the form of linear matrix inequalities are derived by introducing the S‐procedure, such that the closed‐loop system is stable and the solutions converge to a ball. The control design conditions are relaxed and design flexibility is enhanced because of the developed controller. By introducing the output‐space partition method and S‐procedure, the unmatched regions between the system plant and the controller caused by the quantization errors can be solved in the control design. Finally, simulations are given to verify the effectiveness of the proposed method.  相似文献   

13.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

14.
This paper addresses the problem of using output feedback to globally control a class of nonlinear systems whose output functions are not precisely known. First, for the nominal linear system, we design a homogeneous state compensator without requiring precise information of the output function, and construct a nonlinear stabilizer with adjustable coefficients by using the generalized adding a power integrator technique. Then based on the homogeneous domination approach, a scaling gain is introduced into the proposed output feedback controller, which can be used by tuning the scaling gain to solve: (i) the problem of global output feedback stabilization for a class of upper‐triangular systems; and (ii) the problem of global practical output tracking for a class of lower‐triangular systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The problem of global stabilization by output feedback is investigated in this paper for a class of nonminimum‐phase nonlinear systems. The system under consideration has a cascade configuration that consists of a driven system known as the inverse dynamics and a driving system. It is proved that although the zero dynamics may be unstable, there is an output feedback controller, globally stabilizing the nonminimum‐phase system if both driven and driving systems have a lower‐triangular form and satisfy a Lipschitz‐like condition, and the inverse dynamics satisfy a stronger version of input‐to‐state stabilizability condition. A design procedure is provided for the construction of an n‐dimensional dynamic output feedback compensator. Examples and simulations are also given to validate the effectiveness of the proposed output feedback controller. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper develops a systematic design scheme to construct a linear sampled‐data output feedback controller that semi‐globally asymptotically stabilizes a class of uncertain systems with both higher‐order and linear growth nonlinearities. To deal with the uncertain coefficients in the systems, a robust state feedback stabilizer and a reduced‐order sampled‐data observer, both in the linear form, are constructed and then integrated together. The semi‐global attractivity and local stability are delicately proved by carefully selecting a scaling gain using the output feedback domination approach and a sampling period sufficiently small to restrain the state growth under a zero‐order‐holder input. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the decentralized output feedback control problem for Markovian jump interconnected systems with unknown interconnections and measurement errors. Different from some existing results, the global operation modes of all subsystems are not required to be completely accessible for the decentralized control system. A decentralized dynamic output feedback controller is constructed using neighboring mode information and local outputs, where the measurement errors between actual and measured outputs are considered. Subsequently, a new design method is developed such that the resultant closed‐loop system is stochastically stable and satisfying an L‐norm constraint. Sufficient conditions are formulated by linear matrix inequalities, and the controller gains are characterized in terms of the solution of a convex optimization problem. Finally, an example is given to illustrate the effectiveness of the proposed theoretical results.  相似文献   

18.
We investigate the problem of robust adaptive tracking by output feedback for a class of uncertain nonlinear systems. Based on the high‐gain scaling technique and a new adaptive law, a linear‐like output feedback controller is constructed. Only one dynamic gain is designed, which makes the controller easier to implement. Furthermore, by modifying the update law, the adaptive controller is robust to bounded external disturbance and is able to guarantee the convergence of the output tracking error to an arbitrarily small residual set. A numerical example is used to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of decentralized output feedback stabilization for a class of large‐scale stochastic time‐delay systems with Markovian jumping parameters. Attention is focused on the design of a decentralized dynamic output feedback controller, which is also with Markovian jumping parameters, such that the closed‐loop system is exponentially mean‐square stable. A sufficient condition for the solvability of this problem is proposed in terms of linear matrix inequalities. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
The problem of output feedback stabilization of linear systems based on a reduced‐order model is addressed in this paper. New reduced‐order models are proposed for the output feedback design of linear systems with a singular perturbation model. An output feedback controller with a zero steady‐state gain matrix is proposed for stabilizing this kind of system. It is shown that with the proposed controller the reduced‐order model based feedback design can guarantee the actual closed‐loop stability for the sufficiently small perturbation parameter. This approach can overcome the difficulties in the existing design method using the so‐called zeroth‐order approximation model, whose validity is highly dependent on the value of the perturbation parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号