首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
This paper focuses on a new approach to design (possibly fractional) set-point filters for fractional control systems. After designing a smooth and monotonic desired output signal, the necessary command signal is obtained via fractional input-output inversion. Then, a set-point filter is determined based on the synthesized command signal. The filter is computed by minimizing the 2-norm of the difference between the command signal and the filter step response. The proposed methodology allows the designer to synthesize both integer and fractional setpoint filters. The pros and cons of both solutions are discussed in details. This approach is suitable for the design of two degreeof-freedom controllers capable to make the set-point tracking performance almost independent from the feedback part of the controller. Simulation results show the effectiveness of the proposed methodology.   相似文献   

2.
This paper addresses a new approach to design rule-based controllers using concepts of rough sets and techniques of state feedback. The goal is to obtain rule-based models that allow the construction of control loops, ensuring stable conditions and suitable dynamic characteristics for nonlinear systems. The study performs a comparison of the procedure proposed with results obtained with a conventional control, where a system with nonlinear behavior is used. Numerical examples derived from computer simulations and real applications are shown. Experiments in a level plant were performed, checking the potential of the rule-based controllers.  相似文献   

3.
This paper introduces an intelligent control system for traffic signal applications, called Fuzzy Intelligent Traffic Signal (FITS) control. It provides a convenient and economic approach to improve existing traffic light infrastructure. The control system is programmed on an intermediate hardware device capable of receiving messages from signal controller hardware as well as overriding traffic light indications during real-time operations. Signal control and optimization toolboxes are integrated into the embedded software in the FITS hardware device. A fuzzy logic based control has been implemented in FITS. In order to evaluate the effects of FITS system, this study attempts to develop a computational framework to evaluate FITS system using microscopic traffic simulation. A case study is carried out, comparing different commonly used signal control strategies with the FITS control approach. The simulation results show that the control system has the potential to improve traffic mobility, compared to all of the tested signal control strategies, due to its ability in generating flexible phase structures and making intelligent timing decisions. In addition, the effects of detector malfunction are also investigated in this study. The experiment results show that FITS exhibits superior performance than several other controllers when a few detectors are out-of-order due to its self-diagnostics feature.  相似文献   

4.
In this paper, we present a linear matrix inequality (LMI)-based solution to implement H-two and Hinfinity decentralized robust control strategies. Appropriate parametrization of optimal H-two and H-infinity controllers is used. The general formulation of the decentralized control design leads to the optimal determination of both the state feedback gains and the observer gains of the decentralized controllers. This formulation is two folds: first, a centralized controller is obtained, and then, a simplified decentralized solution is derived by optimizing only the observer gains. The mathematical determination of these gains is formulated as an LMI optimization problem that can be easily solved using LMI solvers. As an experimental evaluation of these controllers, a real time application to an aerothermic process is carried out. A continuous-time model of the process obtained with a suitable direct continuous-time identification approach is elaborated. Results illustrating the real performance obtained from the H-two and H-infinity decentralized controllers are discussed and compared with the centralized ones.  相似文献   

5.
《Journal of Process Control》2014,24(9):1462-1471
Feedforward control from measurable disturbances can significantly improve the performance in control loops. However, tuning rules for such controllers are scarce. In this paper design rules for how to choose optimal low-order feedforward controller parameter are presented. The parameters are chosen so that the integrated squared error, when the system is subject to a step disturbance, is minimized. The approach utilizes a controller structure that decouples the feedforward and the feedback controller. The optimal controller can suffer from undesirable high-frequency noise characteristics and tuning methods for how to filter the control signal are also provided. For scenarios where perfect disturbance attenuation in theory is achievable but where noise-filtering is needed, the concept of precompensation is introduced as a way to shift the controller time-delay to compensate for the low-pass filtering.  相似文献   

6.
In this paper, simulated and experimental results on the conical tank level control are presented. PI/PID controllers of integer order (IO) as well as of fractional order (FO) are studied and compared. The tuning parameters are obtained first by using root locus (RL) and Ziegler and Nichols methods, for comparison purposes. Next, particle swarm optimization (PSO) is employed to determine the optimal controllers'' parameters using as fitness function the integral of the absolute value of tracking error (IAE). From the experimental results it is concluded that PI/FOPI are the controllers presenting the lowest IAE indexes, whereas PID/FOPID controllers present the lowest energy consumption by the control signal.  相似文献   

7.
This paper presents a level control problem of a coupled two tank single input single output (SISO) system. A cascade control strategy is adopted having a fractional order proportional integral (FOPI) controller and fractional order proportional derivative (FOPD) controller in the outer and the inner loops, respectively. Cascaded integer order proportional integral (IOPI) and integer order proportional derivative (IOPD) controllers are also designed to compare the performances. A frequency domain approach is followed to design all the controllers. It is mathematically shown that the FOPI and FOPD controllers can achieve less steady state error and consume less energy than that of the IOPI and IOPD controllers while meeting the same phase margin and gain crossover frequency. All propositions are validated on an experimental setup.  相似文献   

8.
This work presents a hybrid nonlinear control methodology for a broad class of switched nonlinear systems with input constraints. The key feature of the proposed methodology is the integrated synthesis, via multiple Lyapunov functions, of “lower-level” bounded nonlinear feedback controllers together with “upper-level” switching laws that orchestrate the transitions between the constituent modes and their respective controllers. Both the state and output feedback control problems are addressed. Under the assumption of availability of full state measurements, a family of bounded nonlinear state feedback controllers are initially designed to enforce asymptotic stability for the individual closed-loop modes and provide an explicit characterization of the corresponding stability region for each mode. A set of switching laws are then designed to track the evolution of the state and orchestrate switching between the stability regions of the constituent modes in a way that guarantees asymptotic stability of the overall switched closed-loop system. When complete state measurements are unavailable, a family of output feedback controllers are synthesized, using a combination of bounded state feedback controllers, high-gain observers and appropriate saturation filters to enforce asymptotic stability for the individual closed-loop modes and provide an explicit characterization of the corresponding output feedback stability regions in terms of the input constraints and the observer gain. A different set of switching rules, based on the evolution of the state estimates generated by the observers, is designed to orchestrate stabilizing transitions between the output feedback stability regions of the constituent modes. The differences between the state and output feedback switching strategies, and their implications for the switching logic, are discussed and a chemical process example is used to demonstrate the proposed approach.  相似文献   

9.
In some applications, vibration control objectives may require reduction of levels at locations where control system components cannot be sited due to space or environmental considerations. Control actuators and error sensors for such a scenario will need to be placed at appropriate locations which are potentially remote from the points where ultimate attenuation is desired. The performance of the closed loop system, therefore, cannot be assessed simply by the measurement obtained at this local error sensor. The control design objective has to take into account the vibration levels at the remote locations as well. A design methodology was recently proposed that tackles such problems using a single-loop feedback control architecture. The work in this paper describes an extension of this control design procedure to enable the systematic design of multiple decentralised control loops. The approach is based upon sequential loop closing and conditions are provided that ensure that closed loop stability is maintained even in the event of failure in some control loops. The design procedure is illustrated through its application to a laboratory scale slab floor that replicates the problems associated with human induced vibration in large open-plan office buildings. The experimental results demonstrate the efficacy of the approach and significant suppression of the dominant low frequency modes in the floor is achieved using two independent acceleration feedback control loops.  相似文献   

10.
Fuzzy controller design includes both linear and non-linear dynamic analysis. The knowledge base parameters associated within the fuzzy rule base influence the non-linear control dynamics while the linear parameters associated within the fuzzy output signal influence the overall control dynamics. For distinct identification of tuning levels, an equivalent linear controller output and a normalized non-linear controller output are defined. A linear proportional-integral-derivative (PID) controller analogy is used for determining the linear tuning parameters. Non-linear tuning is derived from the locally defined control properties in the non-linear fuzzy output. The non-linearity in the fuzzy output is then represented in a graphical form for achieving the necessary non-linear tuning. Three different tuning strategies are evaluated. The first strategy uses a genetic algorithm to simultaneously tune both linear and non-linear parameters. In the second strategy the non-linear parameters are initially selected on the basis of some desired non-linear control characteristics and the linear tuning is then performed using a trial and error approach. In the third method the linear tuning is initially performed off-line using an existing linear PID law and an adaptive non-linear tuning is then performed online in a hierarchical fashion. The control performance of each design is compared against its corresponding linear PID system. The controllers based on the first two design methods show superior performance when they are implemented on the estimated process system. However, in the presence of process uncertainties and external disturbances these controllers fail to perform any better than linear controllers. In the hierarchical control architecture, the non-linear fuzzy control method adapts to process uncertainties and disturbances to produce superior performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号