首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
In this paper, a force-tracking impedance controller with an on-line neural-network compensator is shown to be able to track a reference force in the presence of unknown environmental dynamics. The controller can be partitioned into three parts. The computed torque method is used to linearize and decouple the dynamics of a manipulator. An impedance controller is then added to regulate the mechanical impedance between the manipulator and its environment. In order to track a reference force signal, an on-line neural network is used to compensate the effect of unknown parameters of the manipulator and environment.  相似文献   

2.
为提高移动机器人对特定轨迹的重复跟踪能力,提出了采用开闭环PD型迭代学习控制算法对移动机器人进行轨迹跟踪控制的方法。建立了包含外界干扰的非完整约束条件下的轮式移动机器人运动学模型,给出了系统的控制算法和控制结构。仿真结果表明,采用开闭环PD型迭代学习控制算法对轨迹跟踪是可行有效的,收敛速度优于其他迭代学习算法。  相似文献   

3.
极坐标下基于迭代学习的移动机器人轨迹跟踪控制   总被引:2,自引:0,他引:2  
为提高自主移动机器人对一类特殊轨迹的重复跟踪能力,在极坐标下建立了3轮全向移动机器人的运动学模型,结合离散时域下对轨迹跟踪问题的描述方法,采用开闭环P型迭代学习控制算法,并在给定条件下证明了其收敛性,随着迭代次数的增加,该算法能够有效改善动态不确定环境中系统的稳定性与收敛的快速性。通过将仿真结果作用于实际动态系统的初始控制输入,从而在实际环境下能以较少的迭代过程来获取控制律。实验结果表明,在仿真环境下机器人可以较好地跟踪玫瑰曲线,在实际机器人测试中,机器人能够较好地跟踪期望轨迹,从而证实了该方法对提高自主移动机器人轨迹跟踪能力的可行性与有效性。  相似文献   

4.
Adaptive iterative learning control for robot manipulators   总被引:4,自引:0,他引:4  
In this paper, we propose some adaptive iterative learning control (ILC) schemes for trajectory tracking of rigid robot manipulators, with unknown parameters, performing repetitive tasks. The proposed control schemes are based upon the use of a proportional-derivative (PD) feedback structure, for which an iterative term is added to cope with the unknown parameters and disturbances. The control design is very simple in the sense that the only requirement on the PD and learning gains is the positive definiteness condition and the bounds of the robot parameters are not needed. In contrast to classical ILC schemes where the number of iterative variables is generally equal to the number of control inputs, the second controller proposed in this paper uses just two iterative variables, which is an interesting fact from a practical point of view since it contributes considerably to memory space saving in real-time implementations. We also show that it is possible to use a single iterative variable in the control scheme if some bounds of the system parameters are known. Furthermore, the resetting condition is relaxed to a certain extent for a certain class of reference trajectories. Finally, simulation results are provided to illustrate the effectiveness of the proposed controllers.  相似文献   

5.
This paper studies stable adaptive tracking control of rigid-link electrically driven robot manipulators in the presence of uncertainties in kinematics, manipulator dynamics, and actuator dynamics. A new task-space control method using visual task-space information is proposed to overcome the uncertainties adaptively. Accelerations measurements are avoided in the control voltage inputs by constructing observers to specify desired armature currents. Simulation results illustrate the performance of the proposed control method.  相似文献   

6.
For many coordinated tasks, a two-arm robot cannot be properly controlled by using a simple position control scheme and therefore requires a certain form hybrid control. Uchiyama and Dauchez recently proposed a symmetric hybrid position/force scheme for the manipulation of rigid objects rigidly held. The main results of this theory are summarized in this paper, and the limitations are pointed out. Several examples in which the relative motion of the end effectors cannot be neglected are presented: manipulation of rigid objects non-rigidly held, deformation of a flexible object, and assemblies of two objects “in space”. These tasks are analyzed and attempted control schemes are given for each of them. The dynamic effects are always neglected in this preliminary theoretical approach. An experimental setup built around two six axis PUMA arms and a parallel processing controller has been installed in order to validate our theoretical results. The hardware and software of this setup are also briefly described in this paper.  相似文献   

7.
针对具有未知动态的电驱动机器人,研究其自适应神经网络控制与学习问题.首先,设计了稳定的自适应神经网络控制器,径向基函数(RBF)神经网络被用来逼近电驱动机器人的未知闭环系统动态,并根据李雅普诺夫稳定性理论推导了神经网络权值更新律.在对回归轨迹实现跟踪控制的过程中,闭环系统内部信号的部分持续激励(PE)条件得到满足.随着PE条件的满足,设计的自适应神经网络控制器被证明在稳定的跟踪控制过程中实现了电驱动机器人未知闭环系统动态的准确逼近.接着,使用学过的知识设计了新颖的学习控制器,实现了闭环系统稳定、改进了控制性能.最后,通过数字仿真验证了所提控制方法的正确性和有效性.  相似文献   

8.
Hanlei  Yongchun   《Automatica》2009,45(9):2114-2119
It has been about two decades since the first globally convergent adaptive tracking controller was derived for robots with dynamic uncertainties. However, not until recently has the problem of concurrent adaptation to both the kinematic and dynamic uncertainties found its solution. This adaptive controller belongs to passivity-based control. Though passivity-based controllers have many attractive properties, in general, they are not able to guarantee the uniform performance of the robot over the entire workspace. Even in the ideal case of perfect knowledge of the manipulator parameters, the closed-loop system remains nonlinear and coupled. Thus the closed-loop tracking performance is difficult to quantify, while the inverse dynamics controllers can overcome these deficiencies. Therefore, in this work, we will develop a new adaptive Jacobian tracking controller based on the inverse manipulator dynamics. Using the Lyapunov approach, we have proved that the end-effector motion tracking errors converge asymptotically to zero. Simulation results are presented to show the performance of the proposed controller.  相似文献   

9.
This paper presents a tracking control with guaranteed prescribed performance (PP) for space free-flying robots with uncertain kinematics (Jacobian matrix) and dynamics, uncertain normal force parameter, and bounded disturbances in a compliant contact with a planar surface. Given the orientation of the surface and a nonlinear model of the elastic force, a controller is designed requiring no information on the robot parameters and the disturbances. This controller will guarantee that the tracking errors satisfy PP indexes such as the maximum steady-state errors and overshoots, and the minimum convergence rates. Thus, contact maintenance can be ensured as prescribed. An approximation of the Jacobian is utilized in the presence of uncertain robot kinematics, and PP position/attitude tracking of the free-flying base is achieved in addition to the PP force/position tracking of the manipulator’s fingertip. The proposed controller is based on an error transformation technique, and a directly tunable gain for the transformed error feedback is introduced in the control to trade off between the tracking performance and control effort. Numerical simulations and comparisons demonstrate the effectiveness and superiority of the proposed controller.  相似文献   

10.
This paper addresses adaptive control architectures for systems that respond autonomously to changing tasks. Such systems often have many sensory and motor alternatives and behavior drawn from these produces varying quality solutions. The objective is then to ground behavior in control laws which, combined with resources, enumerate closed-loop behavioral alternatives. Use of such controllers leads to analyzable and predictable composite systems, permitting the construction of abstract behavioral models. Here, discrete event system and reinforcement learning techniques are employed to constrain the behavioral alternatives and to synthesize behavior on-line. To illustrate this, a quadruped robot learning a turning gait subject to safety and kinematic constraints is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号