首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
《Control Engineering Practice》2009,17(12):1367-1379
This paper presents new approaches to the identification of the vehicle sideslip angle and the road bank angle in real-time. The major challenge is that the vehicle sideslip angle and the road bank angle are coupled together with the system uncertainties, such as variations in the vehicle parameters and the tire cornering stiffness. To resolve this difficulty, the proposed estimation algorithms identify the uncertain vehicle parameters using the sensor measurements such as the steering angle, the lateral acceleration and the yaw rate, and then estimate the vehicle sideslip angle and the road bank angle via a simple algebraic relationship in real time. In particular, the use of the lateral G sensor signal makes it possible to identify the cornering stiffness and vehicle sideslip angle without any a priori knowledge on the road bank angle. The performance of the proposed algorithms is verified through simulation and experimental results.  相似文献   

2.
车辆质心侧偏角是描述车辆侧向运动状态的重要参量之一,其估计的精度直接影响车辆的安全控制,传统的质心侧偏角估计方法不能满足非结构道路环境下的智能汽车质心侧偏角估计的要求。通过建立3自由度智能汽车动力学模型,采用CarSim和MATLAB构建智能汽车整车参数化模型;基于扩展kalman滤波(EKF)算法,设计非结构道路环境下的状态观测器对智能汽车质心侧偏角进行估计。在高、低附着系数路面双移线工况和蛇形工况下,对状态观测器的估计效果进行联合仿真验证。仿真结果表明:该方法能较精确地估计出非结构道路环境下智能汽车的质心侧偏角。  相似文献   

3.
Estimation of vehicle sideslip, tire force and wheel cornering stiffness   总被引:1,自引:0,他引:1  
This paper presents a process for the estimation of tire–road forces, vehicle sideslip angle and wheel cornering stiffness. The method uses measurements (yaw rate, longitudinal/lateral accelerations, steering angle and angular wheel velocities) only from sensors which can be integrated or have already been integrated in modern cars. The estimation process is based on two blocks in series: the first block contains a sliding-mode observer whose principal role is to calculate tire–road forces, while in the second block an extended Kalman filter estimates sideslip angle and cornering stiffness. More specifically, this study proposes an adaptive tire-force model that takes variations in road friction into account. The paper also presents a study of convergence for the sliding-mode observer. The estimation process was applied and compared to real experimental data, in particular wheel force measurements. The vehicle mass is assumed to be known. Experimental results show the accuracy and potential of the estimation process.  相似文献   

4.
针对四轮独立驱动、独立转向汽车循迹控制精度和转向稳定性兼容问题,同时考虑减小轮胎磨损,延长轮胎使用寿命,本文基于阿克曼转向原理和RBF神经网络PID理论,提出了一种自适应的循迹控制方法.首先,设计了基于RBF神经网络PID理论的自适应转向控制器,用于控制前内轮转角,保证循迹精度;其次,后内轮以减小质心侧偏角为目标进行辅助转向,保证转向稳定性;接着,基于阿克曼转向原理,确定外轮转角,保证各轮侧偏力分配合理;最后,采用同一瞬心法,确定各车轮转速,以减小轮胎滑动率.本文搭建了CarSim和MATLAB/Simulink联合仿真平台,进行了仿真实验,结果表明:本文提出的循迹控制方法,不仅能获得较小的循迹偏差和质心侧偏角,保证了足够的循迹控制精度和转向稳定性,同时还减小了轮胎滑动率,有利于减小轮胎的磨耗.  相似文献   

5.
When four wheel side driven EV travals in steering or changes lanes in high speed, the vehicle is easy to side-slip or flick due to the difference of wheel hub motor and a direct effect of vehicle nonlinear factors on vehicle yaw motion, which would affect vehicle handling and stability seriously. To solve this problem, a joint control strategy, combined with the linear programming algorithm and improved sliding mode algorithm, which combines the exponential reaching law and saturation function was proposed. Firstly, the vehicle dynamics model and the reference model according with the structure and driving characteristics of four wheel side driven EV were set up. Then, introduced the basic method of the improved sliding mode variable structure control and complete the sliding mode variable structure controller design basic on vehicle sideslip angle and yaw velocity.The controller accomplish optimal allocation of vehicle braking force through a linear programming algorithm, according to yaw moment produced by the vehicle motion state. Single lane driving simulation results show that the proposed control strategy can not only control vehicle sideslip angle and yaw velocity well, but also accomplish good controlling of the vehicle yaw moment, so as to significantly improve the handling and stability of vehicle.  相似文献   

6.
The current research on vehicle stability control mainly focuses on following the ideal yaw rate and sideslip angle, without considering the potential of ideal roll angle in improving the vehicle stability. In addition, the mutation of tire-road friction coefficient promotes a great challenge to the stability control. To improve the vehicle stability, in this study, firstly, the three-dimensional stability region of “lateral speed-yaw rate-roll angle” was studied, and a method to determine the ideal roll angle was proposed. Secondly, a novel integrated control framework of AFS, ASS, and DYC based on ideal roll angle was proposed to actively control the front tire slip angles, suspension forces, and motor torques: In the upper-level controller, model predictive control and tire force distribution algorithm were used to obtain the optimal four-tire longitudinal forces, front tire lateral forces and additional roll moment under constraints; In the lower-level controller, the upper virtual target was realized by the optimal allocation algorithm of actuators and the tire slip controller. Finally, the proposed control framework was verified on the varied-µ road. The results indicated that compared with the two existing control strategies, the proposed framework can significantly improve the vehicle following performance and stability.  相似文献   

7.
This paper deals with vehicle sideslip angle estimation. The paper introduces an industrially amenable kinematic-based approach that does not need tire–road friction parameters or other dynamical properties of the vehicle. The convergence of the estimate is improved by the introduction of a heuristic based on readily available inertial measurements. The method is tested on a vast collection of tests performed in different conditions, showing a satisfactory behavior despite not using any information on the road friction. The extensive experimental validation confirms that the estimate is robust to a wide range of driving scenarios.  相似文献   

8.
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model. A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration. The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out, which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.   相似文献   

9.
轮胎故障是造成交通事故的主要原因之一.但是目前大多数轮胎故障监测方法由于需 要使用各种复杂的传感器因此制造代价高昂且不可靠.为此,提出了一种新型实用的轮眙故障观 测器.基于考虑外界不确定干扰的新型动态轮胎/路面磨擦模型,该观测器仅仅使用汽车驱动力 及轮胎转速数据,跟踪估计轮胎/路面磨擦系数的变化,并通过对磨擦状况的分析对轮胎状态做 出合理的判断.由于转速传感器是汽车防滑刹车控制系统(ABS)的基本组成部分,因此该观测器 可与ABS结合工作,低成本的实现轮胎故障监测.  相似文献   

10.
提出了一种新型的基于滑模观测器理论的汽车轮胎力级联估计方法.首先基于单轮滚动动力学模型,以车轮转动角速度及驱动力矩作为输入,针对每个车轮的纵向轮胎力设计了纵向轮胎力滑模观测器.又采用了简化的车辆2自由度模型,以纵向轮胎力估计值、 前轮转角、 侧向加速度及横摆角速度作为输入,分别设计了前、 后轴侧向轮胎力滑模观测器.最后,为验证所设计的观测器的有效性,应用高保真车辆动力学软件veDYNA进行了仿真研究,并与扩展卡尔曼滤波(extendedKalman filter,EKF)方法进行了对比分析.实验结果表明,基于滑模观测器的车辆轮胎力级联估计方法具有更高的准确性.  相似文献   

11.
江青云  罗禹贡  褚文博  刘力 《计算机仿真》2012,29(1):297-300,368
研究汽车高速运行稳定性优化控制问题,在车辆稳定性控制中,质心侧偏角是衡量稳定性的重要指标,观测对于稳定性控制非常重要。针对目前车载多传感器信息的观测条件,为解决质心侧偏角观测的准确性、快速性和多工况适应性问题,提出了一种融合卡尔曼滤波和信号积分的质心侧偏角观测算法。观测算法充分考虑了车辆动力学特性,采用车辆运行过程的多种工况进行了算法设计及切换。最后在Matlab/Simulink平台上搭建了质心侧偏角观测仿真实验平台,通过多工况下的仿真,对所提出的质心侧偏角观测算法进行了仿真验证,结果表明能快速准确地矫正质心侧偏角,使稳态误差减小。  相似文献   

12.
为解决轮式移动机器人的滑移补偿控制问题,首先推导出车体侧滑角的表达式,然后将时变侧滑角的重建问题转化为对地面特性参数的辨识问题.利用Luenberger观测器设计出自适应辨识律,并证明了当控制输入满足持续激励条件时,可以准确辨识出地面特性参数.基于链式系统模型设计出滑移补偿控制器,在滑移角精确已知的条件下,可以保证位置误差收敛,姿态误差有界.仿真结果表明,基于所设计的自适应辨识律,可以准确地重建出滑移角,提高滑移控制精度.  相似文献   

13.
李红波  张寅奇  吴渝  薛亮 《计算机工程》2012,38(18):273-276
现有3D引擎的物理模型不能真实反映车辆制动时的运动状态。为此,提出一种汽车制动稳定性虚拟展示系统。建立汽车动力学模型,包括四轮车辆模型和车轮轮胎模型,利用上层仿真软件对动力学模型进行运算和虚拟场景渲染,给出车轮状态和虚拟仪表的展现方法,并基于3D引擎设计虚拟展现系统。实验结果表明,该系统能同时观测整车及车轮的运行状态,实时再现制动过程中车轮抱死、车身横摆侧滑的行为,其动力学模型能够满足虚拟展现对画面渲染的实时性、连续性要求。  相似文献   

14.
基于自抗扰技术的高超声速飞行器控制系统设计   总被引:3,自引:3,他引:0  
高超声速飞行器在飞行过程中超燃冲压发动机对攻角及侧滑角有较严格的要求,为实现对攻角及侧滑角的精确控制,文章采用自抗扰控制技术设计了高超声速飞行器的攻角自动驾驶仪;首先建立高超声速飞行器控制系统的数学模型,然后采用扩张状态观测器对受扰对象的状态和干扰进行观测,并对状态误差采用非线性反馈,对观测的干扰进行补偿,从而实现对干扰的快速抑制和对指令的精确跟踪,最后仿真表明所设计的自动驾驶仪满足性能要求,验证了该方法的正确性。  相似文献   

15.
A controller which ensures the driving stability of a four-wheel-independent-drive electric vehicle (4WID-EV) is designed in this paper. The controller is structurally hierarchically designed. In order to keep the 4WID-EV running steadily, an upper-level controller integrating the active front-wheel steering control method (AFS) and direct yaw moment control method (DYC) is designed to keep the sideslip angle and yaw rate tracking the ideal values. A non-smooth control method is used to improve the closed-loop system's convergence and anti-disturbance performance. The additional yaw moment generated by the upper-level controller is distributed to four driving wheels by the lower-level controller. An optimal control algorithm is used in the lower-level controller to achieve the minimum sum of tire utilisation, and ensure the power performance and driving stability of the 4WID-EV. In order to verify the effectiveness of the designed controller, a simulation model of the stability control system is established based on Carsim-Matlab/Simulink. And the simulation is performed under double lane change road considering the disturbances. The results of the simulation show that the 4WID-EV with the designed controller achieves smaller sideslip angle than sliding-mode control and the actuator chatter is slight. Then the stability and safety of the 4WID-EV are greatly improved.  相似文献   

16.
4WS整车虚拟样机建模与动力学仿真   总被引:1,自引:0,他引:1  
为了改善汽车在高速行驶转弯时的操纵稳定性,运用动力学仿真软件ADAMS,在其专业汽车模块ADAMS/CAR下研究了4WS汽车建模及其瞬态和稳态操纵动力学特性。以质心侧偏角和横摆角速度响应为评价指标,在角阶跃输入下高速转弯时,对前后轮转角成比例关系的4WS汽车和FWS汽车分别做了动力学仿真研究。对比分析了两者的质心侧偏角和横摆角速度响应特性,从分析结果得出,后轮主动参与转向,总体上有助于改善汽车在高速行驶转弯时的动力学响应特性,但是不同的因素也会对操纵稳定性产生不利的影响。  相似文献   

17.

This paper presents a novel hybrid observer structure to estimate the lateral tire forces and road grip potential without using any tire–road friction model. The observer consists of an Extended Kalman Filter structure, which incorporates the available prior knowledge about the vehicle dynamics, a feedforward Neural Network structure, which is used to estimate the highly nonlinear tire behavior, and a Recursive Least Squares block, which predicts the road grip potential. The proposed observer was evaluated under a wide range of aggressive maneuvers and different road grip conditions using a validated vehicle model, validated tire model, and sensor models in the simulation environment IPG CarMaker ®. The results confirm its good and robust performance.

  相似文献   

18.
This paper proposes a new integrated vehicle dynamics management for enhancing the yaw stability and wheel slip regulation of the distributed‐drive electric vehicle with active front steering. To cope with the unknown nonlinear tire dynamics with uncertain disturbances in integrated control problem of vehicle dynamics, a neuro‐adaptive predictive control is therefore proposed for multiobjective coordination of constrained systems with unknown nonlinearity. Unknown nonlinearity with unmodeled dynamics is modeled using a random projection neural network via adaptive machine learning, where a new adaptation law is designed in premise of Lyapunov stability. Given the computational efficiency, a neurodynamic method is extended to solve the constrained programming problem with unknown nonlinearity. To test the performance of the proposed control method, simulations were conducted using a validated vehicle model. Simulation results show that the proposed neuro‐adaptive predictive controller outperforms the classical model predictive controller in tracking nominal wheel slip ratio, desired vehicle yaw rate and sideslip angle, showing its significance in vehicle yaw stability enhancement and wheels slip regulation.  相似文献   

19.
对于一些高性能飞行器(如飞翼布局飞行器),仅采用安装在机头表面的测压孔的FADS系统方案.某些情况下不一定能够给出较为准确的飞行姿态数据;针对飞翼布局飞行平台对高精度迎角、侧滑角的依赖性.给出了一种采用安装于机头表面的测压孔和机翼前缘的测压孔相结合的FADS系统方案,推导了其空气动力学模型,并用BP神经网络拟合出了迎角和侧滑角的修正曲线,结果表明该方案能够满足系统精度的要求。  相似文献   

20.
基于一个三自由度的转向系统模型,利用数值仿真方法分析了横拉杆刚度、主销后倾角、转向机刚度、轮胎侧偏刚度、轮胎拖距、转向机阻尼、绕主销当量阻尼等参数对载重汽车自激型摆振的影响.仿真分析的结果表明,上述参数发生变化时,可诱发自激摆振,但车速也是影响摆振的关键因素之一.在确定的系统参数和车速下,初始激励不仅可能诱发稳定的自激摆振,还可能是发散的运动.与受迫型自激摆振不同,自激型摆振的频率变化与车速的变化并不一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号