共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
区间参数多目标优化问题是普遍存在且非常重要的。目前直接求解该类问题的进化优化方法非常少,且已有方法的目的是找到收敛性好且分布均匀的Pareto最优解集。为得到符合决策者偏好的最满意解,本文综述3种基于偏好的区间多目标进化算法,并将其应用于特定环境下机器人路径规划问题,比较3种算法的性能。研究结果可丰富特定环境下机器人路径规划的求解方法,提高机器人路径优化效果。 相似文献
3.
针对区间参数多目标优化问题,提出一种基于模糊支配的多目标粒子群优化算法。首先,定义基于决策者悲观程度的模糊支配关系,用于比较解的优劣;然后,定义一种适于区间目标值的拥挤距离,以更新外部存储器并从中选择领导粒子;最后,对多个区间多目标测试函数进行仿真实验,实验结果验证了所提出算法的有效性。 相似文献
4.
5.
进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法. 相似文献
6.
提出一种基于差分进化多目标优化算法.首先,采用基于差分进化的种群启发式搜索,根据多目标优化的特点,进行基于全部种群的Pareto占优比较和选择,有效实现全局搜索和局部搜索.另外,利用一个外部种群来储存非支配解,当非支配解的个数大于外部种群预先设定的规模时,对每个非支配个体采用基于支配关系和拥挤信息的适应度策略评价,然后采用基于密度的选择策略对外部种群进行删减,进一步提高算法的均匀性和宽广性.与NSGA-Ⅱ、PESA-Ⅱ、SPEA2的比较结果表明,该算法不仅收敛性较好,而且在均匀性和宽广性上优势明显. 相似文献
7.
参数不确定优化问题是实践中经常遇到的复杂优化问题, 现有方法多针对单目标函数的情况. 本文利用微粒群优化算法解决含区间参数多目标优化问题, 提出一种基于概率支配的多目标微粒群优化算法. 该算法通过定义概率支配关系, 比较所得解的优劣; 基于 σ 区间值, 选择微粒的全局极值点, 并给出新的微粒个体极值点及外部储备集的更新策略. 与传统多目标微粒群优化算法比较, 仿真结果表明本文所提算法的有效性. 相似文献
8.
求解约束多目标区间优化的交互多属性决策NSGA-II 算法 总被引:2,自引:0,他引:2
针对约束多目标区间优化问题,提出一种交互多属性决策NSGA-Ⅱ算法.该算法将非线性问题线性化,定义占优支配关系求出个体的序值,定义区间拥挤距离来区分具有相同序值个体的优劣,采用约束精英策略删除种群中不满足约束的个体.将选出的个体作为方案集,目标函数作为属性集,决策者对于各目标函数的偏好作为属性权重,构建一个多属性决策模型,在进化过程中融入该模型来选取符合决策者偏好的满意解.仿真实验验证了所提出方法的可行性和正确性. 相似文献
9.
针对区间多目标优化问题,利用云模型对NSGA-II算法进行改进,提出一种非支配排序云模型算法(NSCMA)。首先,从初始云团中随机选取一个云滴作为父代,通过正态云算子生成子代云滴,用来替代传统NSGA-II遗传操作中的交叉和变异;其次,用约束条件对生成的云滴进行筛选处理,避免不可行解进入下一步算法;最后,运用区间占优关系对满足约束条件的解进行占优排序,对无法比较的同序值解计算拥挤距离。仿真结果验证了所设计算法的有效性。 相似文献
10.
传统多目标优化算法(Multi-objective evolution algorithms,MOEAs)的基本框架大致分为两部分:首先是收敛性保持,采用Pareto支配方法将种群分成若干非支配层;其次是分布性保持,在临界层中,采用分布性保持机制维持种群的分布性.然而在处理高维优化问题(Many-objective optimization problems,MOPs)(目标维数大于3)时,随着目标维数的增加,种群的收敛性和分布性的冲突加剧,Pareto支配关系比较个体优劣的能力也迅速下降,此时传统的MOEA已不再适用于高维优化问题.鉴于此,本文提出了一种基于邻域竞赛的多目标优化算法(Evolutionary algorithm based on neighborhood competition for multi-objective optimization,NCEA).NCEA首先将个体的各个目标之和作为个体的收敛性估计;然后,计算当前个体向量与收敛性最好的个体向量之间的夹角,并将其作为当前个体的邻域估计;最后,通过邻域竞赛方法将问题划分为若干个相互关联的子问题并逐步优化.为了验证NCEA的有效性,本文选取5个优秀的算法与NCEA进行对比实验.通过对比实验验证,NCEA具有较强的竞争力,能同时保持良好的收敛性和分布性. 相似文献
11.
G.R. Ruetsch 《Structural and Multidisciplinary Optimization》2005,30(1):27-37
This paper presents an interval algorithm for solving multi-objective optimization problems. Similar to other interval optimization techniques, [see Hansen and Walster (2004)], the interval algorithm presented here is guaranteed to capture all solutions, namely all points on the Pareto front. This algorithm is a hybrid method consisting of local gradient-based and global direct comparison components. A series of example problems covering convex, nonconvex, and multimodal Pareto fronts is used to demonstrate the method. 相似文献
12.
13.
Data mining in incomplete information systems is a hard problem but inevitable in uncertain decision. In thispaper ,an extended rough set model based on dominance relation is combined with fuzzy set theory for data mining ininterval valued decision table ,then decision rules can be obtained from the decision table. Simulation results show that the method is effective. 相似文献
14.
一个多目标优化演化算法的收敛性分析框架* 总被引:2,自引:2,他引:2
由于演化算法求解多目标优化问题所得结果是一个优化解集——Pareto最优集,而现有的演化算法收敛性分析只适合针对单目标优化问题的单个。用有限马尔科夫链给出了演化算法求解多目标优化问题的收敛性分析框架,并给出了一个分析实例。 相似文献
15.
There is still a big question to the community of multi-objective optimization: how to compare effectively the performances of multi-objective stochastic optimizers? The existing metrics suffer from different drawbacks to address this question. In this article, three convergence-based M-ary cardinal metrics are proposed, based on different forms of dominance relations between two solutions, for comparing performances of two optimizers from their multiple runs. The metrics are first tested on some benchmark instances whose performances are already known, and then their outcomes for some other instances are compared with those of three existing metrics. 相似文献
16.
Ting-Nung Shiau Chung-Hao Kang De-Shin Liu 《Structural and Multidisciplinary Optimization》2008,36(6):623-631
A new interval optimization algorithm is presented in this paper. In engineering, most optimization algorithms focus on exact
parameters and optimum objectives. However, exact parameters are not easy to be manufactured to because of manufacturing errors
and expensive manufacturing cost. To account for these problems, it is necessary to estimate interval design parameters and
allowable objective error. This is the first paper to propose a new interval optimization algorithm within the context of
Genetic Algorithms. This new algorithm, the Interval Genetic Algorithm (IGA), can neglect interval analysis and determines
the optimum interval parameters. Furthermore, it can also effectively maximize the design scope. The optimizing ability of
the IGA is tested through the interval optimization of a two-dimensional function. Then the IGA is applied to rotor-bearing
systems. The results show that the IGA is effective in deriving optimal interval design parameters within the allowable error
when minimizing shaft weight and/or transmitted force of rotor-bearing systems. 相似文献
17.
We build upon a recently proposed multi-objective view onto performance measurement of single-objective stochastic solvers. The trade-off between the fraction of failed runs and the mean runtime of successful runs – both to be minimized – is directly analyzed based on a study on algorithm selection of inexact state-of-the-art solvers for the famous Traveling Salesperson Problem (TSP). Moreover, we adopt the hypervolume indicator (HV) commonly used in multi-objective optimization for simultaneously assessing both conflicting objectives and investigate relations to commonly used performance indicators, both theoretically and empirically. Next to Penalized Average Runtime (PAR) and Penalized Quantile Runtime (PQR), the HV measure is used as a core concept within the construction of per-instance algorithm selection models offering interesting insights into complementary behavior of inexact TSP solvers. 相似文献
18.
19.
Genetic algorithm based multi-objective reliability optimization in interval environment 总被引:1,自引:0,他引:1
In most of the real world design or decision making problems involving reliability optimization, there are simultaneous optimization of multiple objectives such as the maximization of system reliability and the minimization of system cost, weight and volume. In this paper, our goal is to solve the constrained multi-objective reliability optimization problem of a system with interval valued reliability of each component by maximizing the system reliability and minimizing the system cost under several constraints. For this purpose, four different multi-objective optimization problems have been formulated with the help of interval mathematics and our newly proposed order relations of interval valued numbers. Then these optimization problems have been solved by advanced genetic algorithm and the concept of Pareto optimality. Finally, to illustrate and also to compare the results, a numerical example has been solved. 相似文献
20.