首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 213 毫秒
1.
深度学习技术以数据驱动学习的特点,在自然语言处理、图像处理、语音识别等领域取得了巨大成就。但由于深度学习模型网络过深、参数多、复杂度高等特性,该模型做出的决策及中间过程让人类难以理解,因此探究深度学习的可解释性成为当前人工智能领域研究的新课题。以深度学习模型可解释性为研究对象,对其研究进展进行总结阐述。从自解释模型、特定模型解释、不可知模型解释、因果可解释性四个方面对主要可解释性方法进行总结分析。列举出可解释性相关技术的应用,讨论当前可解释性研究存在的问题并进行展望,以推动深度学习可解释性研究框架的进一步发展。  相似文献   

2.
雷霞  罗雄麟 《计算机应用》2022,42(11):3588-3602
随着深度学习的广泛应用,人类越来越依赖于大量采用深度学习技术的复杂系统,然而,深度学习模型的黑盒特性对其在关键任务应用中的使用提出了挑战,引发了道德和法律方面的担忧,因此,使深度学习模型具有可解释性是使它们令人信服首先要解决的问题。于是,关于可解释的人工智能领域的研究应运而生,主要集中于向人类观察者明确解释模型的决策或行为。对深度学习可解释性的研究现状进行综述,为进一步深入研究建立更高效且具有可解释性的深度学习模型确立良好的基础。首先,对深度学习可解释性进行了概述,阐明可解释性研究的需求和定义;然后,从解释深度学习模型的逻辑规则、决策归因和内部结构表示这三个方面出发介绍了几种可解释性研究的典型模型和算法,另外还指出了三种常见的内置可解释模型的构建方法;最后,简单介绍了忠实度、准确性、鲁棒性和可理解性这四种评价指标,并讨论了深度学习可解释性未来可能的发展方向。  相似文献   

3.
随着数据量呈爆发式增长,深度学习理论与技术取得突破性进展,深度学习模型在众多分类与预测任务(图像、文本、语音和视频数据等)中表现出色,促进了深度学习的规模化与产业化应用。然而,深度学习模型的高度非线性导致其内部逻辑不明晰,并常常被视为“黑箱”模型,这也限制了其在关键领域(如医疗、金融和自动驾驶等)的应用。因此,研究深度学习的可解释性是非常必要的。首先对深度学习的现状进行简要概述,阐述深度学习可解释性的定义及必要性;其次对深度学习可解释性的研究现状进行分析,从内在可解释模型、基于归因的解释和基于非归因的解释3个角度对解释方法进行概述;然后介绍深度学习可解释性的定性和定量评估指标;最后讨论深度学习可解释性的应用以及未来发展方向。  相似文献   

4.
<正>人工智能作为计算机科学最活跃的研究领域,在为人类持续创造新的惊喜的同时,也带来了关于可信性与可解释性的问题与挑战。2022年11月27日,中国软件大会“面向可解释人工智能的软件工程方法与技术”论坛在线上召开。论坛联合主席石川教授应邀作了题为“异质图神经网络及其在软件工程领域的应用思考”的特邀报告,分享了他在异质图神经网络模型领域的最新研究进展,着重介绍了将现实复杂交互系统建模为图结构,并通过异质图神经网络进行预测分析的模型、系统和应用的新研究成果。论坛联合主席邢颖副教授应邀为本专题撰写《基于可解释性人工智能的软件工程技术方法综述》,分享了她对可解释性人工智能基本概念以及模型可解释性评估的理解,从软件工程研究者的角度分析了恶意软件检测、高风险组件检测、软件负载分配、二进制代码相似性分析等通过可解释AI提升智能软件系统可信度的方法,展望了软件工程与可解释人工智能相结合的重要研究方向。  相似文献   

5.
李凌敏  侯梦然  陈琨  刘军民 《计算机应用》2022,42(12):3639-3650
近年来,深度学习在很多领域得到广泛应用;然而,由于深度神经网络模型的高度非线性操作,导致其可解释性较差,并常常被称为“黑箱”模型,无法应用于一些对性能要求较高的关键领域;因此,对深度学习的可解释性开展研究是很有必要的。首先,简单介绍了深度学习;然后,围绕深度学习的可解释性,从隐层可视化、类激活映射(CAM)、敏感性分析、频率原理、鲁棒性扰动测试、信息论、可解释模块和优化方法这8个方面对现有研究工作进行分析;同时,展示了深度学习在网络安全、推荐系统、医疗和社交网络领域的应用;最后,讨论了深度学习可解释性研究存在的问题及未来的发展方向。  相似文献   

6.
可解释的知识图谱推理方法综述   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来,以深度学习模型为基础的人工智能研究不断取得突破性进展,但其大多具有黑盒性,不利于人类认知推理过程,导致高性能的复杂算法、模型及系统普遍缺乏决策的透明度和可解释性。在国防、医疗、网络与信息安全等对可解释性要求严格的关键领域,推理方法的不可解释性对推理结果及相关回溯造成较大影响,因此,需要将可解释性融入这些算法和系统中,通过显式的可解释知识推理辅助相关预测任务,形成一个可靠的行为解释机制。知识图谱作为最新的知识表达方式之一,通过对语义网络进行建模,以结构化的形式描述客观世界中实体及关系,被广泛应用于知识推理。基于知识图谱的知识推理在离散符号表示的基础上,通过推理路径、逻辑规则等辅助手段,对推理过程进行解释,为实现可解释人工智能提供重要途径。针对可解释知识图谱推理这一领域进行了全面的综述。阐述了可解释人工智能和知识推理相关概念。详细介绍近年来可解释知识图谱推理方法的最新研究进展,从人工智能的3个研究范式角度出发,总结了不同的知识图谱推理方法。提出对可解释的知识图谱推理研究前景和未来研究方向。  相似文献   

7.
随着人工智能与教育的不断发展,知识追踪在智慧教学领域具有广阔的应用前景。而深度学习以其强大特征提取能力广泛应用于知识追踪,以深度学习知识追踪模型为起点,其改进模型为主线,全面回顾了知识追踪模型的研究进展,简要介绍了知识追踪领域传统模型的特点及不足,阐述了基于深度学习知识追踪模型的原理及局限性,同时全面整理并分析了针对可解释性问题、缺少学习特征、记忆增强网络、图神经网络、基于注意力机制五个方面的改进模型,梳理了知识追踪领域常用的公开数据集、评价指标及模型性能对比分析,最后总结并探讨了知识追踪在智慧教学方面的应用以及当前该研究领域的研究现状与未来的研究方向。  相似文献   

8.
目前,深度学习模型已被广泛部署于各个工业领域.然而,深度学习模型具有的复杂性与不可解释性已成为其应用于高风险领域最主要的瓶颈.在深度学习模型可解释性方法中,最重要的方法是可视化解释方法,其中注意力图是可视化解释方法的主要表现方式,可通过对样本图像中的决策区域进行标注,来直观地展示模型决策依据.目前已有的基于注意力图的可...  相似文献   

9.
深度学习目前在计算机视觉、自然语言处理、语音识别等领域得到了深入发展,与传统的机器学习算法相比,深度模型在许多任务上具有较高的准确率.然而,作为端到端的具有高度非线性的复杂模型,深度模型的可解释性没有传统机器学习算法好,这为深度学习在现实生活中的应用带来了一定的阻碍.深度模型的可解释性研究具有重大意义而且是非常必要的,近年来许多学者围绕这一问题提出了不同的算法.针对图像分类任务,将可解释性算法分为全局可解释性和局部可解释性算法.在解释的粒度上,进一步将全局解释性算法分为模型级和神经元级的可解释性算法,将局部可解释性算法划分为像素级特征、概念级特征以及图像级特征可解释性算法.基于上述分类框架,总结了常见的深度模型可解释性算法以及相关的评价指标,同时讨论了可解释性研究面临的挑战和未来的研究方向.认为深度模型的可解释性研究和理论基础研究是打开深度模型黑箱的必要途径,同时可解释性算法存在巨大潜力可以为解决深度模型的公平性、泛化性等其他问题提供帮助.  相似文献   

10.
深度神经网络在多个领域取得了突破性的成功,然而这些深度模型大多高度不透明。而在很多高风险领域,如医疗、金融和交通等,对模型的安全性、无偏性和透明度有着非常高的要求。因此,在实际中如何创建可解释的人工智能(Explainable artificial intelligence, XAI)已经成为了当前的研究热点。作为探索XAI的一个有力途径,模糊人工智能因其语义可解释性受到了越来越多的关注。其中将高可解释的Takagi-Sugeno-Kang(TSK)模糊系统和深度模型相结合,不仅可以避免单个TSK模糊系统遭受规则爆炸的影响,也可以在保持可解释性的前提下取得令人满意的测试泛化性能。本文以基于栈式泛化原理的可解释的深度TSK模糊系统为研究对象,分析其代表模型,总结其实际应用场景,最后剖析其所面临的挑战与机遇。  相似文献   

11.
面向知识图谱的知识推理旨在通过已有的知识图谱事实,去推断新的事实,进而实现知识库的补全.近年来,尽管基于分布式表示学习的方法在推理任务上取得了巨大的成功,但是他们的黑盒属性使得模型无法为预测出的事实做出解释.所以,如何设计用户可理解、可信赖的推理模型成为了人们关注的问题.从可解释性的基本概念出发,系统梳理了面向知识图谱的可解释知识推理的相关工作,具体介绍了事前可解释推理模型和事后可解释推理模型的研究进展;根据可解释范围的大小,将事前可解释推理模型进一步细分为全局可解释的推理和局部可解释的推理;在事后解释模型中,回顾了推理模型的代表方法,并详细介绍提供事后解释的两类解释方法.此外,还总结了可解释知识推理在医疗、金融领域的应用.随后,对可解释知识推理的现状进行概述,最后展望了可解释知识推理的未来发展方向,以期进一步推动可解释推理的发展和应用.  相似文献   

12.
This paper reviews recent studies in understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, interpretability is always Achilles’ heel of deep neural networks. At present, deep neural networks obtain high discrimination power at the cost of a low interpretability of their black-box representations. We believe that high model interpretability may help people break several bottlenecks of deep learning, e.g., learning from a few annotations, learning via human–computer communications at the semantic level, and semantically debugging network representations. We focus on convolutional neural networks (CNNs), and revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends in explainable artificial intelligence.  相似文献   

13.
深度学习的发明,使得人工智能技术迎来了新的机遇,再次进入了蓬勃发展期。其涉及到的隐私、安全、伦理等问题也日益受到了人们的广泛关注。以对抗样本生成为代表的新技术,直接将人工智能、特别是深度学习模型的脆弱性展示到了人们面前,使得人工智能技术在应用落地时,必须要重视此类问题。本文通过对抗样本生成技术的回顾,从信号层、内容层以及语义层三个层面,白盒攻击与黑盒攻击两个角度,简要介绍了对抗样本生成技术,目的是希望读者能够更好地发现对抗样本的本质,对机器学习模型的健壮性、安全性和可解释性研究有所启发。  相似文献   

14.
以深度学习为主要代表的人工智能技术正在悄然改变人们的生产生活方式,但深度学习模型的部署也带来了一定的安全隐患.研究针对深度学习模型的攻防分析基础理论与关键技术,对深刻理解模型内在脆弱性、全面保障智能系统安全性、广泛部署人工智能应用具有重要意义.拟从对抗的角度出发,探讨针对深度学习模型的攻击与防御技术进展和未来挑战.首先介绍了深度学习生命周期不同阶段所面临的安全威胁.然后从对抗性攻击生成机理分析、对抗性攻击生成、对抗攻击的防御策略设计、对抗性攻击与防御框架构建4个方面对现有工作进行系统的总结和归纳.还讨论了现有研究的局限性并提出了针对深度学习模型攻防的基本框架.最后讨论了针对深度学习模型的对抗性攻击与防御未来的研究方向和面临的技术挑战.  相似文献   

15.
随着大数据时代的到来,深度学习技术已经成为当前人工智能领域的一个研究热点,其已在图像识别、语音识别、自然语言处理、搜索推荐等领域展现出了巨大的优势,并且仍在继续发展变化.为了能够及时跟踪深度学习技术的最新研究进展,把握深度学习技术当前的研究热点和方向,本文针对深度学习技术的相关研究内容进行综述.首先介绍了深度学习技术的应用背景、应用领域,指出研究深度学习技术的重要性;其次介绍了当前重要的几种神经网络模型及两种常用大规模模型训练并行方案,其目的在于从本质上理解深度学习的模型架构和及其优化技巧;接着对比分析了当下主流的深度学习软件工具和相关的工业界研究平台,旨在为神经网络模型的实际使用提供借鉴;最后详细介绍了当下几种主流的深度学习硬件加速技术和最新研究现状,并对未来研究方向进行了展望。  相似文献   

16.
Dam displacements can effectively reflect its operational status, and thus establishing a reliable displacement prediction model is important for dam health monitoring. The majority of the existing data-driven models, however, focus on static regression relationships, which cannot capture the long-term temporal dependencies and adaptively select the most relevant influencing factors to perform predictions. Moreover, the emerging modeling tools such as machine learning (ML) and deep learning (DL) are mostly black-box models, which makes their physical interpretation challenging and greatly limits their practical engineering applications. To address these issues, this paper proposes an interpretable mixed attention mechanism long short-term memory (MAM-LSTM) model based on an encoder-decoder architecture, which is formulated in two stages. In the encoder stage, a factor attention mechanism is developed to adaptively select the highly influential factors at each time step by referring to the previous hidden state. In the decoder stage, a temporal attention mechanism is introduced to properly extract the key time segments by identifying the relevant hidden states across all the time steps. For interpretation purpose, our emphasis is placed on the quantification and visualization of factor and temporal attention weights. Finally, the effectiveness of the proposed model is verified using monitoring data collected from a real-world dam, where its accuracy is compared to a classical statistical model, conventional ML models, and homogeneous DL models. The comparison demonstrates that the MAM-LSTM model outperforms the other models in most cases. Furthermore, the interpretation of global attention weights confirms the physical rationality of our attention-based model. This work addresses the research gap in interpretable artificial intelligence for dam displacement prediction and delivers a model with both high-accuracy and interpretability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号