首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.  相似文献   

2.
Conventional sliding mode control (SMC) has been extensively applied in controlling spacecrafts because of its appealing characteristics such as robustness and a simple design procedure. Several methods such as second-order sliding modes and discontinuous controllers are applied for the SMC implementation. However, the main problems of these methods are convergence and error tracking in a finite amount of time. This paper combines an improved dynamic sliding mode controller and model predictive controller for spacecrafts to solve the chattering phenomenon in traditional sliding mode control. To this aim, this paper develops dynamic sliding mode control for spacecraft’s applications to omit the chattering issue. The proposed approach shows robust attitude tracking by a set of reaction wheels and stabilizes the spacecraft subject to disturbances and uncertainties. The proposed method improves the performance of the SMC for spacecraft by avoiding chattering. A set of simulation results are provided that show the advantages and improvements of this approach (in some sense) compared to SMC approaches.  相似文献   

3.
In this paper,a robust nonlinear free vibration control design using an operator based robust right coprime factorization approach is considered for a flexible plate with unknown input nonlinearity.With considering the effect of unknown input nonlinearity from the piezoelectric actuator,operator based controllers are designed to guarantee the robust stability of the nonlinear free vibration control system.Simultaneously,for ensuring the desired tracking performance and reducing the effect of unknown input nonlinearity,operator based tracking compensator and estimation structure are given,respectively.Finally,both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.  相似文献   

4.
Actuator faults usually cause security problem in practice. This paper is concerned with the security control of positive semi-Markovian jump systems with actuator faults. The considered systems are with mode transition-dependent sojourntime distributions, which may also lead to actuator faults. First, the time-varying and bounded transition rate that satisfies the mode transition-dependent sojourn-time distribution is considered. Then, a stochastic co-positive Lyapunov function is constructed. Using matrix decomposition technique, a set of state-feedback controllers for positive semi-Markovian jump systems with actuator faults are designed in terms of linear programming. Under the designed controllers, stochastic stabilization of the systems with actuator faults are achieved and the security of the systems can be guaranteed. Furthermore, the proposed results are extended to positive semi-Markovian jump systems with interval and polytopic uncertainties. By virtue of a segmentation technique of the transition rates, a less conservative security control design is also proposed. Finally, numerical examples are provided to demonstrate the validity of the presented results.  相似文献   

5.
A robust sliding mode approach combined with a field oriented control (FOC) for induction motor (IM) speed control is presented. The proposed sliding mode control (SMC) design uses an adaptive switching gain and an integrator. This approach guarantees the same robustness and dynamic performance of traditional SMC algorithms. And at the same time, it attenuates the chattering phenomenon, which is the main drawback in actual implementation of this technique. This approach is insensitive to uncertainties and permits to decrease the requirement for the bound of these uncertainties. The stability and robustness of the closed- loop system are proven analytically using the Lyapunov synthesis approach. The proposed method attenuates the effect of both uncertainties and external disturbances. Experimental results are presented to validate the effectiveness and the good performance of the developed method.  相似文献   

6.
A simple method is proposed to design P/PI controllers for a series cascade control system for unstable first order plus time-delay (FOPTD) systems. In this paper, the controller design for unstable FOPTD systems cascaded in series with stable/unstable FOPTD systems is considered. The proposed method is based on equating the coefficients of corresponding powers of s and s2 in the numerator to α1 and α2 times those of the denominator of the closed-loop transfer function for a servo problem. The open loop system consists of an unstable FOPTD system cascaded in series with a stable/unstable FOPTD system. Only two tuning parameters (α1 and α2) are required for the design of controllers. The closed-loop performances are evaluated for both the servo and regulatory problems and the performances are found to be better than that of the well established synthesis method. The robustness for uncertainty in the model parameters is studied and compared with that of the controllers designed by the synthesis method.  相似文献   

7.
In this paper, a sliding mode control with adaptive gain combined with a high-order sliding mode observer to solve the tracking problem for a quadrotor UAV is addressed, in presence of bounded external disturbances and parametric uncertainties. The high order sliding mode observer is designed for estimating the linear and angular speed in order to implement the proposed scheme. Furthermore, a Lyapunov function is introduced to design the controller with the adaptation law, whereas an analysis of finite time convergence towards to zero is provided, where sufficient conditions are obtained. Regarding previous works from literature, one important advantage of proposed strategy is that the gains of control are parameterized in terms of only one adaptive parameter, which reduces the control effort by avoiding gain overestimation. Numerical simulations for tracking control of the quadrotor are given to show the performance of proposed adaptive control–observer scheme.  相似文献   

8.
Conventional sliding mode controllers are based on the assumption of switching control, but a well-known drawback of such controllers is the chattering phenomenon. To overcome the undesirable chattering effects, the discontinuity in the control law can be smoothed out in a thin boundary layer neighboring the switching surface. In this paper, rigorous proofs of the boundedness and convergence properties of smooth sliding mode controllers are presented. This result corrects flawed conclusions previously reached in the literature. An illustrative example is also presented in order to confirm the convergence of the tracking error vector to the defined bounded region.  相似文献   

9.
We present a novel control approach for trajectory tracking of an autonomous airship.First,the dynamics model and the trajectory control problem of an airship are formulated.Second,the sliding mode control law is designed to track a time-varying reference trajectory.To achieve better control performance,fuzzy adaptive sliding mode control is proposed in which the control gains are tuned according to fuzzy rules,and an adaptation law is used to guarantee that the control gains can compensate for model uncertainties of the airship.The stability of the closed-loop control system is proven via the Lyapunov theorem.Finally,simulation results illustrate the effectiveness and robustness of the proposed control scheme.  相似文献   

10.
The problem of quantized dynamic output feedback H_∞control for discrete-time linear time-invariant(LTI)systems is investigated in this paper.The quantizer considered is dynamic and composed of an adjustable"zoom"parameter and a static quantizer.Static quantizer ranges are of practical significance and are fully considered.First,taking quantization errors into account, a quantized control strategy is dependent not only on the controller states but also on the system measurement outputs,which is proposed such that the quantized closed-loop system is asymptotically stable and with a prescribed H_∞performance bound.Then, on the basis of this result,an iterative LMI-based optimization algorithm is developed to optimize the static quantizer ranges to meet H_∞performance requirements for closed-loop systems.An example is presented to illustrate the effectiveness of the proposed method.  相似文献   

11.
李俊麟  王宏博  张伟  高升 《测控技术》2023,42(10):74-81
针对机械臂系统存在的系统参数摄动、非线性摩擦及外部干扰等不确定问题,提出一种自适应反演超螺旋全局终端滑模轨迹跟踪控制方法。该方法基于反演法、Lyapunov理论和全局快速终端滑模理论设计控制器,保证系统稳定性及全局收敛性,增强系统的鲁棒性。为解决系统集总扰动上界未知的问题,采用自适应技术设计切换控制律,抵消不确定性的影响,同时引入超螺旋算法抑制滑模控制固有的抖振现象。最后,通过理论分析和仿真算例验证了该控制器的有效性与可行性。  相似文献   

12.
针对受参数不确定和负载扰动影响的直流无刷电机的鲁棒速度控制问题,采用二阶滑模控制中的超螺旋算法设计速度控制器。控制器将不连续控制作用在滑模量的二阶微分上,不但保持了传统一阶滑模的性能,而且消弱了系统抖振。仿真结果表明,算法对负载和参数的变化具有很强的鲁棒性,有效地消弱了传统滑模的抖振现象。  相似文献   

13.
王伟  师兴伟  林德福  毛宁 《控制与决策》2019,34(7):1553-1558
为了降低导弹飞行中不确定因素等对弹体滚转稳定的影响,设计两种新型基于二阶滑模控制理论的滚转稳定控制器,即基于二阶滑模控制理论的控制器与基于super-twisting算法的控制器.第一种控制器能够稳定地控制滚转角收敛至期望值,而第二种控制器不仅能够有效降低气动参数不确定性对弹体滚转控制造成的影响,而且能控制滚转角速度在有限时间内收敛至期望值,并有效抑制滑模算法固有的抖振现象.通过构造Lyapunov函数对所设计控制器的稳定性进行理论验证,将所设计的两种控制器与基于线性滑模控制理论的控制器和基于终端滑模控制理论的控制器进行仿真对比,并考虑不同攻角条件下气动参数的影响,以验证所设计的控制器的有效性、快速性和鲁棒性.  相似文献   

14.
A novel robust technique for speed control application of variable reluctance motor is proposed. The suggested scheme is model based and uses a mathematical model of an SR motor, and Second Order Sliding Mode Control (SOSMC) with super-twisting algorithm. Sliding mode controllers for SR motor were reported before but super twisting SOSMC have an added advantage of reduced chattering which is one of the main focuses of this work. The proposed controller gives fast dynamic response with no overshoot and nearly zero steady state error. The effectiveness of the proposed controller and its robustness to parameter variations is also confirmed by simulation results.  相似文献   

15.
相比于传统滑模控制算法,超螺旋控制算法可以对系统的干扰进行精确估计并补偿,因此可以显著提高闭环系统的抗干扰能力.然而,对于采样控制系统,由于采样频率的限制,离散超螺旋控制算法在性能方面受到限制.本文基于齐次系统理论提出了一种改进的离散超螺旋控制算法.通过引入一个可自由调节的分数幂参数,基于齐次系统理论,证明了所提出的改进控制算法可以使得闭环系统具有更高的控制精度.仿真实例验证了理论的正确性.  相似文献   

16.
针对传统的滑模观测器在实现故障估计时带来的抖振问题,设计基于super-twisting算法的二阶滑模观测器以稳定地估计出故障。针对以往利用几何或齐次性方法证明super-twisting算法稳定性过程繁琐的缺点,采用Lyapunov函数来证明稳定性。给出的故障估计结果克服了传统的滑模观测器在估计故障时带来的时延或引进新参数等缺点。最后,将所提出的方法应用于某型飞控系统,结果表明了所提出方法的有效性。  相似文献   

17.
为了提高永磁同步直线电机的跟踪性能,增强系统的鲁棒性,本文提出了分数阶超螺旋滑模控制策略.首先,针对外部扰动以及系统的未知状态设计广义超螺旋观测器,其能够精确估计永磁同步直线电机的速度和外部扰动.其次,将分数阶理论和终端滑模控制理论相结合,提出有限时间收敛的分数阶超螺旋滑模控制器,以实现永磁同步直线电机的跟踪控制.最后,通过仿真对比验证所提方案的有效性.  相似文献   

18.
This paper presents a new discrete-time super-twisting sliding mode observer with variable gains for sensorless nonsinusoidal vector control of permanent magnet synchronous motors. This observer is adopted to estimate the back electromotive forces (back-EMF) that are required for the rotor speed estimation and for the nonsinusoidal vector control. In addition, their gains are time-varying to minimize the chattering. So, they are adjusted based on internal states of the super-twisting algorithm. The stability analysis is investigated from the Lyapunov theory for discrete-time systems. Finally, simulation and experimental results are presented to demonstrate the good performance and the effectiveness of the proposed observer.  相似文献   

19.
This article presents the design and implementation of a super-twisting second-order sliding-mode controller (SOSMC) for a synchronous reluctance motor. Second-order sliding-mode control is an effective tool for the control of uncertain nonlinear systems since it overcomes the main drawbacks of the classical sliding-mode control, i.e., the large control effort and the chattering phenomenon. Its real implementation implies simple control laws, and ensures an improvement in the sliding accuracy with respect to conventional sliding-mode control. This article proposes a novel scheme that is based on the technique of super-twisting second-order sliding-mode control. First, SOSMC is derived mathematically, and then the performance of the proposed method is verified by simulations. The proposed SOSMC shows robustness for variations in the motor parameters and an improvement in the chattering phenomenon.  相似文献   

20.
本文提出一种超螺旋二阶滑模控制方案同时实现双馈变速风力发电系统最大风能捕获和无功功率调节.通过设计两个二阶滑模控制器,实现控制目标,降低机械磨损,提高控制精度,通过调节发电机转子电压,跟踪风机最优转速和转子电流设定值,实现额定风速以下的最大风能捕获和无功功率调节.采用二次型李雅普诺夫函数确定控制参数范围、确保系统有限时间稳定性.1.5 MW风机系统仿真实验验证所提方案有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号