首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.  相似文献   

2.
Linearizing control of induction motor based on networked control systems   总被引:1,自引:1,他引:0  
A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.  相似文献   

3.
This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control input. The ATSMC structure is designed by considering the nonlinear characteristics of the dynamic model and the parametric uncertainties of the train operation in real time. A nonsingular terminal sliding mode control is employed to make the system quickly reach a stable state within a finite time, which makes the control input less adjust to guarantee the riding comfort. An adaptive mechanism is used to estimate controller parameters to get rid of the need of the prior knowledge about the bounds of system uncertainty. Simulations are presented to demonstrate the effectiveness of the proposed controller, which has robust performance to deal with the external disturbance and system parametric uncertainties. Thereby, the system guarantees the train operation to be accurate and comfortable.  相似文献   

4.
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.  相似文献   

5.
This paper studies a general strategy to predict voice Quality of Experience (QoE) for various mobile networks. Particularly, based on data-mining for Adaptive Multi-Rate (AMR) codec voice, a novel QoE assessment methodology is proposed. The proposed algorithm consists of two parts. The first part is devoted to assessing speech quality of fixed rate codec mode (CM) of AMR while in the other one a adaptive rate CM is designed. Measuring basic network parameters that have much impact on speech quality, QoE can be monitored in rei time for operators. Meanwhile, based on the measurement data sets from real mobile network, the QoE prediction strategy can be implemented and QoE assessment model for AMR codec voice is trained and tested. Finally, the numerical results suggest that the correlation coefficient between predicted values and true values is greater than 90~0 and root mean squared error is less than 0.5 for fixed and adaptive rate CM.  相似文献   

6.
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.  相似文献   

7.
A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier is evaluated for a wide range of operational modes to check the robustness of the scheme in this paper. The neural classifier is adaptive to cope with the significant parameter uncertainty, disturbances, and environment changes. The developed scheme is capable of diagnosing faults in on-line mode and the FDI for the closed-loop system with can be directly implemented in an on-board crankshaft speed feedback is investigated by diagnosis system (hardware). The robustness of testing it for a wide range of operational modes including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all these changes occurring at the same time. The evaluations are performed using a mean value engine model (MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.  相似文献   

8.
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique.The UAV investigated is non- minimum phase.The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system.The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input.Simulation results show that the proposed approaches have good performance.  相似文献   

9.
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.  相似文献   

10.
The control of time delay systems is still an open area for research. This paper proposes an enhanced model predictive discrete-time sliding mode control with a new sliding function for a linear system with state delay. Firstly, a new sliding function including a present value and a past value of the state, called dynamic surface, is designed by means of linear matrix inequalities (LMIs). Then, using this dynamic function and the rolling optimization method in the predictive control strategy, a discrete predictive sliding mode controller is synthesized. This new strategy is proposed to eliminate the undesirable effect of the delay term in the closed loop system. Also, the designed control strategy is more robust, and has a chattering reduction property and a faster convergence of the system s state. Finally, a numerical example is given to illustrate the effectiveness of the proposed control.  相似文献   

11.
一种网络流量预测的小波神经网络模型   总被引:11,自引:1,他引:11  
雷霆  余镇危 《计算机应用》2006,26(3):526-0528
结合小波变换和人工神经网络的优势,建立一种网络流量预测的小波神经网络模型。首先对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,以系数序列和原来的流量时间序列分别作为模型的输入和输出,构造人工神经网络并且加以训练。用实际网络流量对该模型进行验证,结果表明,该模型具有较高的预测效果。  相似文献   

12.
This paper investigates a neuro-wavelet control (NWC) system to address the problem of synchronization control of uncertain chaotic systems. In this NWC system, a wavelet neural network (WNN) controller is the principal tracking controller designed to mimic the perfect control law and an auxiliary compensation controller is used to recover the residual approximation error so that the favorable synchronization can be achieved. Moreover, the proportional-integral (PI) training algorithms of the control system are derived from the Lyapunov stability theorem, which are utilized to update the adjustable parameters of WNN controller on-line for further assuring system stability and obtaining a fast convergence. In addition, to relax the requirement of unknown uncertainty bound, a bound estimation law is derived to estimate the uncertainty bound. Finally, some numerical simulations are presented to illustrate the effectiveness of the proposed control strategy. The simulation results demonstrate that the proposed NWC with PI training algorithms can synchronize the chaotic systems more accurately than the other control strategies.  相似文献   

13.
This paper reports on a modelling study of new solar air heater (SAH) system by using artificial neural network (ANN) and wavelet neural network (WNN) models. In this study, a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate SAH. A SAH system is a multi-variable system that is hard to model by conventional methods. As regards the ANN and WNN methods, it has a superior capability for generalization, and this capability is independent on the dimensionality of the input data’s. In this study, an ANN and WNN based methods were intended to adopt SAH system for efficient modelling. To evaluate prediction capabilities of different types of neural network models (ANN and WNN), their best architecture and effective training parameters should be found. The performance of the proposed methodology was evaluated by using several statistical validation parameters. Comparison between predicted and experimental results indicates that the proposed WNN model can be used for estimating the some parameters of SAHs with reasonable accuracy.  相似文献   

14.
针对板形板厚综合系统具有强耦合、非线性、含纯滞后环节的特点,提出一种基于小波神经网络的逆控制方案.利用两个结构相同的小波神经网络构造Smith预估器,预估器的输入参数与时延阶次无关,能较好地解决小波神经网络对维数较为敏感的问题.采用神经网络逆控制的思想设计小波神经网络控制器,引入多步预测性能指标函数对控制器权值进行在线训练.仿真研究表明,该控制方案具有较快的响应速度和良好的动态性能.  相似文献   

15.
In this paper, an intelligent transportation control system (ITCS) using wavelet neural network (WNN) and proportional-integral-derivative-type (PID-type) learning algorithms is developed to increase the safety and efficiency in transportation process. The proposed control system is composed of a neural controller and an auxiliary compensation controller. The neural controller acts as the main tracking controller, which is designed via a WNN to mimic the merits of an ideal total sliding-mode control (TSMC) law. The PID-type learning algorithms are derived from the Lyapunov stability theorem, which are utilized to adjust the parameters of WNN on-line for further assuring system stability and obtaining a fast convergence. Moreover, based on H control technique, the auxiliary compensation controller is developed to attenuate the effect of the approximation error between WNN and ideal TSMC law, so that the desired attenuation level can be achieved. Finally, to investigate the effectiveness of the proposed control strategy, it is applied to control a marine transportation system and a land transportation system. The simulation results demonstrate that the proposed WNN-based ITCS with PID-type learning algorithms can achieve favorable control performance than other control methods.  相似文献   

16.
This paper proposes an indirect adaptive control method using self recurrent wavelet neural networks (SRWNNs) for dynamic systems. The architecture of the SRWNN is a modified model of the wavelet neural network (WNN). However, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN can store the past information of wavelets. In the proposed control architecture, two SRWNNs are used as both an identifier and a controller. The SRWNN identifier approximates dynamic systems and provides the SRWNN controller with information about the system sensitivity. The gradient-descent method using adaptive learning rates (ALRs) is applied to train all weights of the SRWNN. The ALRs are derived from discrete Lyapunov stability theorem, which are applied to guarantee the convergence of the proposed control system. Finally, we perform some simulations to verify the effectiveness of the proposed control scheme.  相似文献   

17.
In this paper, an adaptive neural controller for a class of time-delay nonlinear systems with unknown nonlinearities is proposed. Based on a wavelet neural network (WNN) online approximation model, a state feedback adaptive controller is obtained by constructing a novel integral-type Lyapunov-Krasovskii functional, which also efficiently overcomes the controller singularity problem. It is shown that the proposed method guarantees the semiglobal boundedness of all signals in the adaptive closed-loop systems. An example is provided to illustrate the application of the approach.  相似文献   

18.
为了解决电容称重传感器的非线性问题,提出了补偿其非线性的小波神经网络方法。该方法以电容称重传感器实验数据为基础,通过小波神经网络训练来确定传感器非线性补偿网络。介绍电容称重传感器非线性补偿原理,分析网络的拓扑结构,给出网络参数训练方法。结果表明,采用小波神经网络进行电容称重传感器非线性补偿具有好的鲁棒性,网络训练速度快、精度高,并能在线补偿,在测试领域有实用价值。  相似文献   

19.
In this paper, a continuous time recurrent neural network (CTRNN) is developed to be used in nonlinear model predictive control (NMPC) context. The neural network represented in a general nonlinear state-space form is used to predict the future dynamic behavior of the nonlinear process in real time. An efficient training algorithm for the proposed network is developed using automatic differentiation (AD) techniques. By automatically generating Taylor coefficients, the algorithm not only solves the differentiation equations of the network but also produces the sensitivity for the training problem. The same approach is also used to solve the online optimization problem in the predictive controller. The proposed neural network and the nonlinear predictive controller were tested on an evaporation case study. A good model fitting for the nonlinear plant is obtained using the new method. A comparison with other approaches shows that the new algorithm can considerably reduce network training time and improve solution accuracy. The CTRNN trained is used as an internal model in a predictive controller and results in good performance under different operating conditions.  相似文献   

20.
参数可变系统时间序列短期预测方法   总被引:1,自引:0,他引:1  
肖芬  高协平 《软件学报》2006,17(5):1042-1050
时间序列预测是一类非常重要的问题,但基本上局限于参数不可变问题的研究,而对实际问题中经常出现的更重要的参数可变系统的预测,由于构成几乎所有已有预测技术基础的Taken嵌入定理不再成立,所以这方面的研究成果极少.使用一种将(多)小波变换与反向传播神经网络相结合的新型网络结构--(多)小波神经网络,尝试对参数可变时间序列的预测.因为(多)小波神经网络的误差函数是一个凸函数,这在一定程度上可以避免经典神经网络容易陷入局部极小、收敛速度慢等问题.对著名的Ikeda参数可变系统的实验表明,多小波神经网络的预测性能较单小波神经网络要好,而单小波神经网络的性能较BP网要好.因此,该方法不失为时间可变系统预测的一种好的推荐.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号