共查询到20条相似文献,搜索用时 78 毫秒
1.
在传统的Apriori的算法中大多存在项集生成瓶颈和难以确定合适的支持度阈值的问题.并且没有考虑各数据之间的重要性。为了解决这些问题,该文提出了一种改进的关联挖掘算法法。 相似文献
2.
3.
一种改进的Apriori挖掘关联规则算法 总被引:4,自引:1,他引:4
关联规则挖掘可以发现大量数据中项集之间有趣的联系,并已在许多领域得到了广泛的应用。但传统关联规则挖掘很少考虑数据项的重要程度,这些算法认为每个数据对规则的重要性相同,实际挖掘的结果不是很理想。为了挖掘出更具有价值的规则,文中提出了一种加权的关联规则算法,即用频度和利润来标识该项的重要性,然后对经典Apriori算法进行改进。最后用实例对改进后算法进行验证,结果证明改进后算法是合理有效的,能够挖掘出更具价值的信息。 相似文献
4.
LIU Zhi- yi 《数字社区&智能家居》2008,(18)
对关联规则算法进行了研究和分析,基于候选集的Apriori-like算法需要反复扫描数据库,并产生大量的候选集,在挖掘低支持度、长模式的规则时效率低下。针对算法的缺陷,该文提出了一种PS算法,优化了关联规则的挖掘。实验结果证明了该算法的有效性。 相似文献
5.
6.
7.
李红 《数字社区&智能家居》2006,(11):19-19,29
改进频繁项集算法的效率是提高关联规则挖掘性能的重要环节.本文提出了基于包含频繁1-项集的事务集的关联规则挖掘算法,并通过实例说明了算法的有效性,且与Apriori这一经典算法作了比较。 相似文献
8.
李红 《数字社区&智能家居》2006,(32)
改进频繁项集算法的效率是提高关联规则挖掘性能的重要环节,本文提出了基于包含频繁1-项集的事务集的关联规则挖掘算法,并通过实例说明了算法的有效性,且与Apriori这一经典算法作了比较。 相似文献
9.
在FDM算法的基础上,提出了一种改进的并行关联规则挖掘算法FDM_DT,此算法利用DHP算法中的Hash表技术改进了2阶侯选项集的生成过程,并采用Apriori Tid算法中的Tid表技术对事务数据库中的事务数进行有效消减。因此,此算法在处理大规模数据时有较高的综合效率。 相似文献
10.
基于关联规则挖掘中的Apriori算法,在一定条件下,进行局部改进来提高挖掘的时间效率。这种改进本身并不会需要多大的系统开销,但是可以使算法在某些情况下运行得更快些。 相似文献
11.
一种关联规则增量更新算法 总被引:22,自引:0,他引:22
针对事务数据库的内容不断增加后相应关联规则的更新问题,提出了一种简单高效的增量式关联规则挖掘算法SFUA,并和已有的FUP算法进行了分析比较。 相似文献
12.
关联规则挖掘的基本算法 总被引:6,自引:0,他引:6
介绍了加权模糊关联规则挖掘算法的基本思想及实现步骤,并给出挖掘算法的多种策略。在此基础上,分析了加权模糊关联规则与模糊关联规则、布尔型属性加权关联规则、布尔型属性关联规则之间的内在联系,并指出加权模糊关联规则挖掘算法是一种最基本的关联规则挖掘算法,蕴涵了其它3种关联规则挖掘算法。 相似文献
13.
14.
分布式关联规则挖掘中的聚类分区算法 总被引:1,自引:0,他引:1
在分布式关联规则挖掘中首先需要解决分布武环境下的聚类分区问题,该文基于CURE的工作原理,提出了D-CURE算法。实验证明,D-CURE算法可以很好地解决分布式环境下聚类分区问题。 相似文献
15.
基于Apriori算法的水平加权关联规则挖掘 总被引:19,自引:2,他引:19
关联规则挖掘可以发现大量数据中项集之间有趣的关联或相关联系,并已在许多领域得到了广泛的应用。目前业界已经提出了许多发现关联规则的算法,这些算法都认为每个数据对规则的重要性相同。但在实际应用中,用户会比较倾向于自己最感兴趣或认为最重要的那部分项目,因此有必要加强这些项目对规则的影响,同时减弱另一些用户兴趣不大或认为不重要的项目对规则的影响。为此,论文提出了水平加权关联规则的问题,并结合Apriori算法,加以改进,给出了关于该问题的解决方案及有效算法New_Apriori。 相似文献
16.
关联规则和分类规则挖掘算法的改进与实现 总被引:5,自引:0,他引:5
对Apriori关联规则挖掘算法提出了一种改进方法,使其可以有效地压缩数据规模,提高了原Apriori算法的执行效率。此外,还对OCI分类规则挖掘算法提出了改进,扩展了该算法的适用范围。同时,该采用这两个改进算法实现了一个数据挖掘原型系统。 相似文献
17.
基于关联规则的数据挖掘技术的快速算法 总被引:11,自引:1,他引:11
提出了一种改进的Apriori算法的数据挖掘模式,探讨了对其中的生成候选频繁项目集、生成强关联规则等几个关健步骤运用标准SQL语言的算法实现。 相似文献
18.
19.
李涛 《数字社区&智能家居》2007,(18)
关联规则挖掘向来是数据挖掘的一个重要领域,挖掘算法也层出不穷.本文在深入分析了FP树特性的基础上,改进了FP树构造过程,通过一次扫描事务数据库生成FP树.缩短了关联规则挖掘时间,提高了效率,实验验证了其有效性. 相似文献
20.
陈爱萍 《数字社区&智能家居》2005,(36)
数据采集手段的丰富,使获取、保存大量数据变得容易,从庞杂的数据中提取有用的知识和信息是数据挖掘的主要任务,关联规则是数据挖掘领域的一个重要分支。本文针对事务数据库中增加新的数据集后相应关联规则的更新和维护问题,提出了一种关联规则增量式增量算法 相似文献