首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fenghua  Heqing  Xiaoli  Li  Lihui  Jie  Hua  Bin 《Sensors and actuators. B, Chemical》2009,141(2):381-389
Hollow sea urchin-like α-Fe2O3 nanostructures were successfully synthesized by a hydrothermal approach using FeCl3 and Na2SO4 as raw materials, and subsequent annealing in air at 600 °C for 2 h. The hollow sea urchin-like α-Fe2O3 nanostructures with the diameters of 2–4.5 μm consist of well-aligned α-Fe2O3 nanorods with an average length of about 1 μm growing radially from the centers of the nanostructures, have a hollow interior with a diameter of about 2 μm. α-Fe2O3 nanocubes with a diameter of 700–900 nm were directly obtained by a hydrothermal reaction of FeCl3 at 140 °C for 12 h. The response Sr (Sr = Ra/Rg) of the hollow sea urchin-like α-Fe2O3 nanostructures reached 2.4, 7.5, 5.9, 14.0 and 7.5 to 56 ppm ammonia, 32 ppm formaldehyde, 18 ppm triethylamine, 34 ppm acetone, and 42 ppm ethanol, respectively, which was excess twice that of the α-Fe2O3 nanocubes and the nanoparticle aggregations. Our results demonstrated that the hollow sea urchin-like α-Fe2O3 nanostructures were very promising for gas sensors for the detection of flammable and/or toxic gases with good-sensing characteristics.  相似文献   

2.
α-Fe2O3 ultra-fine powder with an average particle size of 6–26nm has been prepared by a sol-gel process. Thermal analysis, X-ray diffraction and transmission electron microscope were used to study its formation process and micro-structure. The temperature dependence of the electric conductance of the elements made of nanocrystalline α-Fe2O3 shows that the gas-sensing properties are strongly related to its surface. The elements exhibited good sensitivity and selectivity to ethyl alcohol, indicating it is a promising alcohol-sensing material.  相似文献   

3.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed.  相似文献   

4.
Nanoplates of α-SnWO4 and SnW3O9 were selectively synthesized in large scale via a facile hydrothermal reaction method. The final products obtained were dependent on the reaction pH and the molar ratio of W6+ to Sn2+ in the precursors. The as-prepared nanoplates of α-SnWO4 and SnW3O9 were characterized by X-ray powder diffraction (XRD), N2-sorption BET surface area, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The XPS results showed that Sn exists in divalent form (Sn2+) in SnW3O9 as well as in α-SnWO4. The gas-sensing performances of the as-prepared α-SnWO4 and SnW3O9 toward H2S and H2 were investigated. The hydrothermal prepared α-SnWO4 showed higher response toward H2 than that prepared via a solid-state reaction due to the high specific surface area. The gas-sensing property toward H2S as well as H2 over SnW3O9 was for the first time reported. As compared to α-SnWO4, SnW3O9 exhibits higher response toward H2S and its higher response can be well explained by the existence of the multivalent W (W6+/W4+) in SnW3O9.  相似文献   

5.
In this study, the nitrogen dioxide (NO2) and ozone (O3) sensing properties of a series bis[tetrakis(alkylthio) phthalocyaninato] lutetium(III) complexes [(CnH2n+1S)4Pc]2Lu(III) (n = 6, 10, 16) are investigated as a function of concentration in the temperature range between 25 °C and 150 °C. The concentration ranges were 1–10 ppm for NO2, and 50 ppb–1 ppm for O3. The response time and the sensor response to NO2 are measured for approximately 1 min and 100% ppm−1, respectively, for compound 1 at room temperature. At room temperature, all compounds are in the solid phase. The response time decreases to a few seconds with increasing operation temperature to 150 °C. At this temperature, all compounds are in the liquid crystal phase. The fastest response to oxidizing gases is observed at the liquid crystal phase of the Pcs. It has also been observed that the response time and the sensor response depend on the alkyl chain lengths of the Pcs. The doping effect of oxygen has been determined under high purity nitrogen N2 flow, after exposure to dry air, at a different period of time and after annealing. It has been found that the conductivities of [(CnH2n+1S)4Pc]2Lu(III) thin films increased after exposure to dry air and the conduction mechanism also changed from ohmic behavior to space-charge-limited conduction.  相似文献   

6.
Co3O4-based nanosystems were prepared on polycrystalline Al2O3 by plasma enhanced-chemical vapor deposition (PE-CVD), at temperatures ranging between 200 and 400 °C. The use of two different precursors, Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) and Co(hfa)2·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) enabled the synthesis of undoped and fluorine-doped Co3O4 specimens, respectively. A thorough characterization of their properties was performed by glancing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). For the first time, the gas sensing properties of such PE-CVD nanosystems were investigated in the detection of ethanol and acetone. The results show an appreciable response improvement upon doping and functional performances directly dependent on the fluorine content in the Co3O4 system.  相似文献   

7.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1.  相似文献   

8.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

9.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

10.
N-type Fe2O3 nanobelts and P-type LaFeO3 nanobelts were prepared by electrospinning. The structure and micro-morphology of the materials were characterized by X-ray diffraction (XRD) and scanning of electron microscopy (SEM). The gas sensing properties of the materials were investigated. The results show that the optimum operating temperature of the gas sensors fabricated from Fe2O3 nanobelts is 285 °C, whereas that from LaFeO3 nanobelts is 170 °C. Under optimum operating temperatures at 500 ppm ethanol, the response of the gas sensors based on these two materials is 4.9 and 8.9, respectively. The response of LaFeO3-based gas sensors behaves linearly with the ethanol concentration at 10-200 ppm. Sensitivities to different gases were examined, and the results show that LaFeO3 nanobelts exhibit good selectivity to ethanol, making them promising candidates as practical detectors of ethanol.  相似文献   

11.
A series of Bi3+ and Gd3+ doped ZnB2O4 phosphors were synthesized with solid state reaction technique. X-ray diffraction technique was employed to study the structure of prepared samples. Excitation and emission spectra were recorded to investigate the luminescence properties of phosphors. The doping of Bi3+ or Gd3+ with a small amount (no more than 3 mol%) does not change the structure of prepared samples remarkably. Bi3+ in ZnB2O4 can emit intense broad-band purplish blue light peaking at 428 nm under the excitation of a broad-band peaking at 329 nm. The optimal doping concentration of Bi3+ is experimentally ascertained to be 0.5 mol%. The decay time of Bi3+ in ZnB2O4 changes from 0.88 to 1.69 ms. Gd3+ in ZnB2O4 can be excited with 254 nm ultraviolet light and yield intense 312 nm emission. The optimal doping concentration of Gd3+ is experimentally ascertained to be 5 mol%. The decay time of Gd3+ in ZnB2O4 changes from 0.42 to 1.36 ms.  相似文献   

12.
The microscopic mechanism of O3 and CO sensing on WO3 surfaces is clarified by a first principle study. It is shown that ozone reduces to O2 on the (0 0 1) surface of WO3 decreasing in such a way the number of oxygen vacancies and the conductivity (since oxygen vacancies act as donors in WO3). The mechanism of CO sensing is just the opposite: the CO molecule is oxidized to CO2 on the WO3 surface increasing the number of oxygen vacancies and the conductivity. The reaction enthalpy for the reduction process of O3 is found to be −2.54 eV in local density approximation (LDA) and −2.86 in generalized gradient approximation (GGA). The corresponding values for CO are −1.73 eV (LDA) and −1.52 eV (GGA). The adsorptions of O3 and CO without reduction or oxidation are also calculated but the related energies are much smaller.  相似文献   

13.
Detection of sulfur dioxide (SO2) at high temperature (600–750 °C) in the presence of some interferents found in combustion exhausts (NO2, NO, CO2, CO, and hydrocarbon (C3H6)) is described. The detection scheme involves use of a catalytic filter in front of a non-Nernstian (mixed-potential) sensing element. The catalytic filter was a Ni:Cr powder bed operating at 850 °C, and the sensing elements were pairs of platinum (Pt) and oxide (Ba-promoted copper chromite ((Ba,Cu)xCryOz) or Sr-modified lanthanum ferrite (LSF)) electrodes on yttria-stabilized zirconia. The Ni:Cr powder bed was capable of reducing the sensing element response to NO2, NO, CO, and C3H6, but the presence of NO2 or NO (“NOx”, at 100 ppm by volume) still interfered with the SO2 response of the Pt–(Ba,Cu)xCryOz sensing element at 600 °C, causing approximately a 7 mV (20%) reduction in the response to 120 ppm SO2 and a response equivalent to about 20 ppm SO2 in the absence of SO2. The Pt–LSF sensing element, operated at 750 °C, did not suffer from this NOx interference but at the cost of a reduced SO2 response magnitude (120 ppm SO2 yielded 10 mV, in contrast to 30 mV for the Pt-(Ba,Cu)xCryOz sensing element). The powder bed and Pt–LSF sensing element were operated continuously over approximately 350 h, and the response to SO2 drifted downward by about 7%, with most of this change occurring during the initial 100 h of operation.  相似文献   

14.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

15.
Nanostrucutred spinel ZnCo2O4 (∼26-30 nm) was synthesized by calcining the mixed precursor (consisting of cobalt hydroxyl carbonate and zinc hydroxyl carbonate) in air at 600 °C for 5 h. The mixed precursor was prepared through a low cost and simple co-precipitation/digestion method. The transformation of the mixed precursor into nanostructured spinel ZnCo2O4 upon calcinations was confirmed by X-ray diffraction (XRD) measurement, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). To demonstrate the potential applicability of ZnCo2O4 spinel in the fabrication of gas sensors, its LPG sensing characteristics were systematically investigated. The ZnCo2O4 spinel exhibited outstanding gas sensing characteristics such as, higher gas response (∼72-50 ppm LPG gas at 350 °C), response time (∼85-90 s), recovery time (∼75-80 s), excellent repeatability, good selectivity and relatively lower operating temperature (∼350 °C). The experimental results demonstrated that the nanostructured spinel ZnCo2O4 is a very promising material for the fabrication of LPG sensors with good sensing characteristics. Plausible LPG sensing mechanism is also discussed.  相似文献   

16.
Nearly monodisperse Co3O4 nanocubes have been prepared by a microwave-assisted solvothermal (MS) method at 180 °C for 20 min. The samples are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD pattern and TEM images of the products illustrated that Co3O4 nanocubes had a cubic phase with a lateral size of ∼20 nm. The gas response of the Co3O4 nanocubes was studied to several typical organic gases. The Co3O4 nanocubes showed good gas sensing performance towards xylene and ethanol vapors with rapid and high responses at a low-operating temperature. The results showed that the Co3O4 nanocubes can be used to fabricate high performance gas sensors.  相似文献   

17.
J.D.  A.  J.R.   《Sensors and actuators. B, Chemical》2009,142(1):179-184
The authors present an ab initio study of NO2 and SO2 chemisorption onto non-polar ZnO and ZnO surfaces with the aim of providing theoretical hints for further developments in gas sensors. From first principles calculations (DFT-GGA approximation), the most relevant surface reduction scenarios are analyzed and, subsequently, considered in the chemisorption study. First, calculations indicate that NO2 adsorbs avidly onto Zn surface atoms. This is compatible with the oxidizing character of NO2. Second, results also explain the sensor poisoning by SO2 adsorption (since this molecule competes with NO2 for the same adsorption sites) and indicate that poisoning can only be reverted at typical operation temperatures (T ≤ 700 °C) in the case of stoichiometric ZnO surfaces.  相似文献   

18.
Qi  Tong  Xuejun  Huitao  Li  Rui  Yi 《Sensors and actuators. B, Chemical》2008,134(1):36-42
Pure and Sm2O3-doped SnO2 are prepared through a sol–gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The sensor based on 6 wt% Sm2O3-doped SnO2 displays superior response at an operating temperature of 180 °C, and the response magnitude to 1000 ppm C2H2 can reach 63.8, which is 16.8 times larger than that of pure SnO2. This sensor also shows high sensitivity under various humidity conditions. These results make our product be a good candidate in fabricating C2H2 sensors.  相似文献   

19.
The α-Fe2O3 nanorods were successfully synthesized without any templates by calcining the α-FeOOH precursor in air at 300 °C for 2 h and their LPG sensing characteristics were investigated. The α-FeOOH precursor was prepared through a simple and low cost wet chemical route at low temperature (40 °C) using FeSO4·7H2O and CH3COONa as starting materials. The formation of α-FeOOH precursor and its topotactic transformation to α-Fe2O3 upon calcination was confirmed by X-ray diffraction measurement (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. The α-Fe2O3 nanorods exhibited outstanding gas sensing characteristics such as, higher gas response (∼1746-50 ppm LPG at 300 °C), extremely rapid response (∼3-4 s), relatively slow recovery (∼8-9 min), excellent repeatability, good selectivity and lower operating temperature (∼300 °C). Furthermore, the α-Fe2O3 nanorods are able to detect up to 5 ppm for LPG with reasonable response (∼15) at the operating temperature of 300 °C and they can be reliably used to monitor the concentration of LPG over the range (5-60 ppm). The experimental results clearly demonstrate the potential of using the α-Fe2O3 nanorods as sensing material in the fabrication of LPG sensors. Plausible LP G sensing mechanism of the α-Fe2O3 nanorods is also discussed.  相似文献   

20.
In situ SiO2-doped SnO2 thin films were successfully prepared by liquid phase deposition. The influence of SiO2 additive as an inhibitor on the surface morphology and the grain size for the thin film has been investigated. These results show that the morphology of SnO2 film changes significantly by increasing the concentration of H2SiF6 solution which decreases the grain size of SnO2. The stoichiometric analysis of Si content in the SnO2 film prepared from various Si/Sn molar ratios has also been estimated. For the sensing performance of H2S gas, the SiO2-doped Cu-Au-SnO2 sensor presents better sensitivity to H2S gas compared with Cu-Au-SnO2 sensor due to the fact that the distribution of SiO2 particles in grain boundaries of nano-crystallines SnO2 inhibited the grain growth (<6 nm) and formed a porous film. By increasing the Si/Sn molar ratio, the SiO2-doped Cu-Au-SnO2 gas sensors (Si/Sn = 0.5) exhibit a good sensitivity (S = 67), a short response time (t90% < 3 s) and a good gas concentration characteristic (α = 0.6074). Consequently, the improvement of the nano-crystalline structures and high sensitivity for sensing films can be achieved by introducing SiO2 additive into the SnO2 film prepared by LPD method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号