首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对频繁项集增量更新的问题,提出算法FIU。该算法将保存了数据库事务的FP-tree存储在磁盘上,当挖掘新支持度阈值的频繁项集时,只需从磁盘上读入FP-tree,再挖掘新支持度阈值下的频繁项集。当新增数据库事务记录后,首先建立新项目表,然后根据新项目表建立新增事务记录的FP-tree,读入存储在磁盘上的FP-tree,抽取出所有的事务记录,再插入到新FP-tree中.从而得到增量更新后的FP-tree。最后在增量更新后的FP-tree上挖掘频繁项集。实验证明,FIU算法执行时间不随数据库大小变化,与其他算法相比有较好的性能。  相似文献   

2.
目前已提出了许多快速的关联规则增量更新挖掘算法,但是它们在处理对新增事务敏感的问题时,往往会丢失一些重要规则。为此,文章提出了一种新的挖掘增量更新后的数据库中频繁项集的算法EUFIA( Entirety Update Frequent Itemsets Algorithm),该算法先对新增事务数据分区,然后快速扫描各分区,能全面有效地挖掘出其中的频繁项集,且不丢失重要规则。同时,最多只扫描1次原数据库也能获得更新后事务数据库的全局频繁项集。研究表明,该算法具有很好的可测量性。  相似文献   

3.
讨论负关联规则的更新问题。与正关联规则增量更新不同,负关联规则不仅存在于频繁项集中,更多存在于非频繁项集中。针对该问题提出一种负关联规则增量更新算法NIUA,利用改进的Apriori算法以及集合的性质挖掘出频繁、非频繁项集和负关联规则。实验结果表明,该算法是可取的。  相似文献   

4.
关联规则是数据挖掘的重要研究内容之一。针对数据库数据增加的同时最小支持度发生改变的关联规则更新维护问题,提出了一种基于矩阵的增量式关联规则挖掘算法IUBM。该算法采用简单的数组和位运算,在执行关联规则的更新时,既不用多次扫描数据库,也不产生庞大的候选项集。实例表明,该算法的时间复杂度和空间复杂度大大降低。  相似文献   

5.
基于FP-growth的关联规则增量更新算法   总被引:2,自引:0,他引:2  
针对最小支持度不变,事务数据库内容不断增加的关联规则更新问题,提出了一种简单高效的增量关联规则更新算法FPUA。  相似文献   

6.
增量更新关联规则挖掘主要解决事务数据库中交易记录不断更新和最小支持度发生变化时关联规则的维护问题。针对目前诸多增量更新关联规则挖掘算法存在效率低、计算成本高、规则难以维护等问题,提出一种基于倒排索引树的增量更新关联挖掘算法。该算法有效地将倒排索引技术与树型结构相结合,使得交易数据库中的数据不断更新和最小支持度随应用环境不同而不断改变时,以实现无需扫描原始交易数据库和不产生候选项集的情况下生成频繁项集。实验结果表明,该算法只需占用较小的存储空间、且检索项集的效率较高,能高效地解决增量更新关联规则难以维护的问题。  相似文献   

7.
该算法用以处理事务数据库不变而最小支持度发生变化后相应关联规则的更新问题。它在充分利用ABM算法挖掘结果的基础上,不需要重新扫描数据库,也不需要额外地为其分配内存单元就能挖掘出所有新的频繁项目集,实验分析证明了UBM算法的正确性和高效性。  相似文献   

8.
频繁项集的挖掘是关联规则挖掘中一个关键的问题,典型的关联规则挖掘算法都是以数据库的多次扫描来实现的,而且不能即时反映数据库的变化,且其频繁项集的产生都只考虑了项目在数据库中出现的频度而没有考虑项目的重要性。本文提出了一种基于频繁链表的完全加权项频繁集的挖掘算法,该算法不但能动态反映数据库的变化,而且在频繁集的挖掘中只需扫描一次数据库,并根据项目的重要性程度对项目赋予了一定的权值,用以挖掘人们更感兴趣的关联规则。  相似文献   

9.
针对目前大数据快速增加的环境下,海量数据的频繁项集挖掘在实际中所面临的增量更新问题,在频繁项超度量树算法(frequent items ultrametric trees,FIUT)的基础上,引入MapReduce并行编程模型,提出了一种针对频繁项集增量更新的面向大数据的并行算法。该算法通过检查频繁超度量树叶子节点的支持度来确定频繁项集,同时采用准频繁项集的策略来优化并行计算过程,从而提高数据挖掘效率。实验结果显示,所提出的算法能快速完成扫描和更新数据,具有较好的可扩展性,适合于在动态增长的大数据环境中进行关联规则相关数据挖掘。  相似文献   

10.
纪怀猛 《计算机工程》2013,(11):183-186
捕要:Apriori算法在关联规则挖掘过程中需要多次扫描事务数据库,产生大量候选项目集,导致计算量过大。为解决该问题,提出一种基于频繁2项集支持矩阵的Apriori改进算法,通过分析频繁k+1项集的生成机制,将支持矩阵与频繁2项集矩阵相结合实现快速剪枝,并大幅减少频繁k项集验证的计算量。实验结果表明,与Apriori算法和ABTM算法相比,改进算法明显提高了频繁项集的挖掘效率。  相似文献   

11.
一种基于事务时间分割的关联规则增量式更新方法   总被引:1,自引:0,他引:1  
文章介绍了一种增量式关联规则更新方法,其核心思想是,将长事务以时间分割,分成一个连续的情节集合,当前情节期间获得的信息,依赖于当前的事务子集以及前面情节期间已经发现的信息。仅使用更新的事务和前面阶段的挖掘结果,增量式地产生频集。用Apriori类算法作为局部过程来产生频集,给出了具体的动态挖掘算法。  相似文献   

12.
目前已提出了许多频繁项集更新算法,但是它们往往需要至少扫描一次原数据库,且会丢失一些重要规则。为此,文章提出了一种新的快速更新频繁项集算法CUFIA(Classifying Update Frequent Itemsets Algorithm),该算法通过对新增事务数据分区后快速逐一扫描,获得频繁项集,并将它们归入3个不同的类别,从而不需要扫描原数据库,便可有效地挖掘出其中的频繁项集,且不丢失重要规则。研究表明,该算法具有很好的可测量性。  相似文献   

13.
快速更新频繁项集   总被引:52,自引:3,他引:52  
发现频繁项集是数据挖掘应用中的关键问题,发现过程的高花费要求对增量数据挖掘算法进行深入研究,首先分析并指出了增量式更新频繁项集算法的技术难点-寻找新的有效频繁项集,其次提出了一种快速的增量式更新频繁项集算法FUFIA,最后对该算法进行了分析和讨论。  相似文献   

14.
探讨了Apriori算法的改进问题,提出了一种适用于中小数据集的关联规则挖掘算法。该算法主要特点是简单、清晰、高效。一方面充分使用了内存的高效存贮,另一方面使用了位运算快速进行计数,同时简化了Apriori算法中频繁项集的计算,大大的减少了中间变量及其存贮的时间和空间,提高了关联规则挖掘的速度和效率。  相似文献   

15.
基于FP_tree的频繁项目集增量式更新算法   总被引:1,自引:0,他引:1  
赵岩  姚勇  刘志镜 《计算机工程》2008,34(11):63-65
对频繁项目集的更新问题进行研究,提出一种基于频繁模式树的频繁项目集增量式更新算法。充分利用已有挖掘结果,有效解决最小支持度和事务数据库同时发生变化时相应频繁项目集的更新问题。在事务数据库变化同时包括增加和减少的情况下,对算法性能进行分析与测试,结果证明该算法高效可行。  相似文献   

16.
对挖掘关联规则中的Apriori算法的一种改进   总被引:1,自引:1,他引:0  
对挖掘关联规则的Apriori算法关键思想以及性能进行了研究,给出该算法的一个改进算法,该改进算法提高了原算法的性能,并从实验中得出相关结果.  相似文献   

17.
刘萍  别荣芳 《计算机应用》2005,25(6):1376-1378,1381
生成关联规则算法FAS,能够迅速区分某频繁项集的所有关联规则的前件和后件,生成给定频繁项目集的关联规则。基于FAS算法,设计并实现了一个基于最近挖掘结果的数据挖掘系统AR—Miner。该系统主要包括数据预处理、频繁集初始计算、频繁集更新计算、频繁集选择、关联规则生成五部分,不仅实现了关联规则挖掘的可视化和生成结果按“支持度一可信度”形式的可视化,还为基于频繁集的交互式挖掘提供了方便、友好的界面。  相似文献   

18.
挖掘关联规则中AprioriTid算法的改进   总被引:2,自引:0,他引:2       下载免费PDF全文
针对Apriori和AprioriTid算法中存在的项集生成瓶颈问题,提出了一种基于事务集压缩、候选项集压缩和支持度布尔矩阵的改进AprioriTid算法。该算法中通过删去不必比较的事务来有效缩减数据集;优化频繁项集的自连接方式来减少生成的候选项集个数;使用支持度布尔矩阵来加快候选项集的验证速度。实验结果表明改进算法确实能有效减少相关计算量,比已有算法执行效率明显提高,同时验证了该算法在旋转机械故障诊断中的有效性。  相似文献   

19.
关联规则的更新是数据挖掘研究的一个重要内容;能否有效地挖掘出动态事务数据库中的最大频繁项目集是衡量一个关联规则更新算法好坏的关键因素。提出基于FP_tree的最大频繁项目集增量式更新(MFIUP)算法;以处理最小支持度和事务数据库同时发生变化之后相应频繁项目集的更新问题;其中事务数据库的变化同时包括增加和减少两种情况;并对其优越性进行了分析和测试。  相似文献   

20.
关联规则挖掘中若干关键技术的研究   总被引:36,自引:0,他引:36       下载免费PDF全文
Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:① 如何确定候选频繁项目集和计算项目集的支持数;② 如何减少候选频繁项目集的个数以及扫描数据库的次数.目前已提出了许多改进方法来解决第2个问题,并已取得了很好的效果.然而,对于第1个问题,仍沿用Apriori算法中的解决方案,其运算量是较大的.为此,提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该算法与Apriori类算法相结合,可以进一步提高算法的执行效率,实验结果也表明算法是有效、快速的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号