首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This article presents a triple‐slotted substrate integrated cavity (SIC)‐fed 2 × 2 metasurface antenna. Three modes can be obtained including TM10 mode of the metasurface, TE210, mode and TE310 mode of the SIC. The TE210 mode of SIC radiates through the two side slots and is coupled to the metasurface mainly by the two side slots, while the TE310 mode of SIC is mainly coupled to the metasurface by the middle slot. Comparing with the reported SIC‐backed slot antenna, dual‐slotted SIC‐fed patch antenna or the metasurface antenna, the proposed antenna exhibits the advantage of wide bandwidth with flat gain. One prototype operated at 10 GHz was fabricated and measured with 10‐dB fractional bandwidth of 33%, the gain of 8.1 dBi at the center frequency, the cross polarization level of 20 dB and the gain ripple of 1.5 dB.  相似文献   

2.
In this article, a novel design of compact cavity‐backed slot antenna based on substrate integrated waveguide (SIW) technology is presented for dual‐frequency communication services. A single layer printed circuit board is applied to implement the proposed antenna. The bowtie‐ring slot engraved on the SIW square cavity is excited using two orthogonal microstrip feed lines to operate at two distinct frequencies (6.62 GHz and 11.18 GHz). The proposed antenna allows each of these frequencies to be designed independently. A prototype of the proposed cavity‐backed antenna that radiates at both 6.62 GHz and 11.18 GHz is fabricated and measured. The port isolation better than 29.3 dB is achieved by utilizing the transmission zeros (TZs), which are produced due to the orthogonal feed lines, TE110 mode and coupling between the TE120 and TE210 modes. The measured peak gains of the proposed diplexing antenna are 5.77 dBi and 5.81 dBi at lower and upper resonating frequencies, respectively. The proposed dual‐frequency antenna exhibits the front‐to‐back‐ratio (FTBR) and cross‐polarization level greater than 26 dB and 21 dB, respectively, at both resonating frequencies.  相似文献   

3.
In this article, a compact dual layer leaky wave antenna array is simulated and constructed using the substrate integrated waveguide (SIW) based on the TE20 mode at the X‐ and Ku‐bands. The proposed antenna is designed by creating dumbbell‐shaped slots on the upper layer of the SIW. These slots have increased the antenna bandwidth so that the proposed antenna has a bandwidth of 9.5 to 13.7 GHz and a fractional bandwidth of 36%. In addition, to excite the TE20 mode, an SIW power divider is used in the feeding network of the antenna located in the bottom layer. Moreover, the gain and directivity are other advantages of the proposed antenna so that at 12.5 GHz the antenna peak gain reaches to 15.7 dB. Antenna beam scanning angle is from 5° to 81°. This antenna is simulated and analyzed by the CST Microwave Studio software. The obtained results from the antenna test lab confirm the simulation results.  相似文献   

4.
In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) coupled through orthogonal slots and excited with a new microstrip circular ring has been investigated. Circular polarization has been achieved by using plus shaped (+) slot on the ground plane and excited through a new microstrip circular ring feed. TE11δ mode has been excited in the RDRA which has been confirmed through the distribution of E ‐field and dielectric waveguide model (DWM) method of RDRA. Circularly polarized (CP) RDRA offering measured ?10 dB input impedance bandwidth of 20.79% (centered at 3.27 GHz) and 3 dB axial ratio bandwidth in broadside direction of 12.09% (centered at 3.39 GHz), respectively. From the CP radiation pattern, proposed design confirms that right ‐ handed CP (RHCP) in broadside direction. The difference between RHCP field and left ‐ handed CP (LHCP) field are above ?26 dB in operational band. In addition, the proposed CP antenna offers stable gain and radiation efficiency in working bands and it is suitable for IEEE 802.16e/d Wi‐MAX (3.3‐3.7 GHz) band.  相似文献   

5.
In this article, a novel electrically small eighth‐mode substrate integrated waveguide (EMSIW) based leaky‐wave antenna (LWA) in planar environment is presented. The proposed antenna uses 1/8th mode SIW resonator which helps to improve compactness of the design while maintaining high gain and increased scanning angle. The proposed SIW cavity is excited by a 50 Ω microstrip line feeding to resonate at dominant TE110 mode in X‐band. The dimensions of the resonators are adjusted to keep resonant mode at same frequency. The fabricated prototype is approximately 5λ0 long. Measured results show that the proposed leaky‐wave antenna is able to operate within frequency range of 8‐10 GHz with beam scanning range of 51° and maximum gain of 13.31 dBi.  相似文献   

6.
A planar substrate integrated waveguide (SIW) based cavity‐backed self‐triplexing slot antenna is proposed for X‐Ku band applications. The antenna comprises of the SIW cavity, radiating slots, and feeding networks. The radiating slots; that are etched on the upper metallic plane of the SIW, are backed up by the three radiated quarter cavities (QCs). The radiating slots in the respective QCs are of different lengths, excited by three separated orthogonal feed lines to resonate at three different frequencies as 11.01, 12.15, and 13.1 GHz. By fine‐tuning the antenna parameters, an intrinsic input port isolation of better than 26 dB is realized which helps in achieving the self‐triplexing property. The behaviors of individual cavity modes at three resonant frequencies are explained with the help of Z‐parameter. The proposed antenna layout is easy to integrate with the planar circuit. The proposed antenna is fabricated and measured results display a close concern with the simulated results. Moreover, a unidirectional radiation pattern and gain of 5.1, 5.54, and 6.12 dBi at resonant frequencies are realized.  相似文献   

7.
A 6–18 GHz wideband cavity‐backed log‐periodic‐slot end‐fire antenna with vertical polarization for conformal application is presented. The log‐periodic folded slots and parasitic slots with 10 slot elements are applied to cover 6–18 GHz frequency band and the log‐periodic metallic cavity is placed under each slot element to keep wideband performance and prevent the effects of large metallic carrier on radiation patterns. The ground plane etched with log‐periodic slots is reversed and touched directly to the backed cavity and a dielectric cover is added to the antenna, to further improve the antenna performance. Meanwhile, a broadband microstrip‐coplanar waveguide transition is inserted in the antenna for measurements. With these designs, the proposed antenna shows good impedance matching (|S11|<27 dB) and end‐fire gain (>4 dBi) performances in 6–18 GHz. The proposed antenna also keeps low‐profile and easy flush‐mounted characteristic which is suitable for conformal applications of high speed moving carriers.  相似文献   

8.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic.  相似文献   

9.
A compact three‐antenna MIMO system based on a triangular half‐mode SIW cavity is proposed. Two isosceles‐right cavity edges are shorted by metallic vias while a hypotenuse is opened to radiate cavity energy into the air. By etching two T‐shaped slots and adopting coaxial feedings, three antennas are formed. The same operating frequencies are achieved by adjusting the position of these slots and high isolation is obtained by optimizing their length. The proposed design has attractive features of simple configuration and compact size, which is completely printed on a single‐layered substrate without external circuitries. A prototype with the overall size of 0.53λ0 × 0.53λ0 has been fabricated. Measured results exhibit the operating frequencies of about 3.51 GHz, high isolation of 16.0 dB, moderate gain of around 4.12 dBi, good radiation efficiency of 81.22%, and low envelope correlation coefficient of 0.16.  相似文献   

10.
A new design of substrate integrated waveguide (SIW) circularly‐polarized (CP) filtering antenna is presented, which is based on dual‐mode (TE102 and TE201) cavities. The satisfying filtering performance of the antenna is realized by a coupled‐resonator circuit of two dual‐mode SIW cavities. And the radiating element of the antenna is a cavity‐backed CP slot antenna which is formed by a nonuniform ring slot integrated with the back cavity. To demonstrate the idea, a prototype antenna operating at X band is designed, fabricated, and measured. Measured results show that the 10‐dB impedance bandwidth is 4.2% (from 11.6 to 12.1 GHz), the 3‐dB axial‐ratio (AR) bandwidth is 4%, and the gain is 5.6 dBi at the center frequency of 11.8 GHz.  相似文献   

11.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

12.
This article presents a dual‐polarized filtering patch antenna, which uses two orthogonal modes (TE210/TE120) of the substrate integrated cavity (SIC) to couple with two orthogonal modes (TM10/TM01) of the patch by the cross slot, respectively. The second‐order filtering response on dual polarizations can be achieved by using just one SIC resonator and one slotted square patch, which display simple structure of the proposed antenna. The slotted square patch provides a new way to obtain same external quality factor of the radiator on dual polarization, which makes the performances on two polarizations agree well with each other when changing the bandwidth. High isolation can be achieved by controlling the space of the vias of the SIC. Radiation nulls can be produced by connecting the coupled lines with the feeding lines in parallel. A prototype with the entire height of 0.019 λ0 (λ0 is the free‐space wavelength at center frequency) achieves a 10‐dB bandwidth of 1.6%, the gain of 4.9 dBi at the center frequency, the port isolation of 43 dB, and the out‐of‐band rejection level of 25 dB.  相似文献   

13.
In this article, compact ring‐shaped dielectric resonator antenna (DRA) along with moon‐shaped defected ground structure (DGS) was studied. The proposed antenna was fed by microstrip line shifted from center position, which excited TE01δ mode in ring DRA. Moon‐shaped DGS was acting as a radiator and also reduced the size of proposed antenna by an amount of 14.87% (lower frequency band) and 48.77% (upper frequency band). The proposed antenna was designed to resonate at two different frequencies namely 2.24 and 5.82 GHz with a fractional bandwidth of 30.17% and 22.14%, respectively. Based on optimized design parameters, archetype of antenna structure has been constructed and measured successfully, which shows good agreement with simulated ones. The proposed antenna design was suitable for WLAN (2.4/5.2/5.8 GHz); WiMAX (2.5/5.5 GHz); AMSAT (5.6/5.8 GHz); and WAVE (5.9 GHz) bands. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:503–511, 2016.  相似文献   

14.
In this article, a novel concept of 3D integrated V‐band diplexer, which permits the realization of compact size using a dual‐mode cavity and four single‐mode cavities, has been realized in low‐temperature cofired ceramic technologies. The dual‐mode cavity resonator acting as one resonator for both Rx and Tx filters is developed to generate two resonant modes (TE102 and TE103) at the center frequency of Rx (56.5–58.5 GHz) and Tx (64–66 GHz) channels, separately. Meanwhile, this dual‐mode cavity becomes the interconnect between Rx/Tx channels and help to realize good isolation without using conventional T‐junction. In the measurement, each filter designed for Rx and Tx channels exhibits excellent performance. Channel‐to‐channel isolations better than 35 dB across the Rx band and better than 32.5 dB across the Tx band are also obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:141–145, 2015.  相似文献   

15.
A compact tri‐band multiple‐input‐multiple‐output (MIMO) antenna based on a quarter‐mode slotted substrate‐integrated‐waveguide (SIW) cavity is proposed. By etching a wide slot, a single SIW cavity is divided into two sub‐cavities with the same size. They are fed by coaxial ports to form two MIMO elements and high antenna isolation can be achieved by this slot. To obtain multi‐band operations, two narrow slots are cut in the upper sub‐cavity and the other two slots are etched in the lower sub‐cavity. Three eighth‐mode resonances with different areas can simultaneously occur in these antenna elements. A prototype with the overall size of 0.34λ0 × 0.34λ0 has been fabricated. The measured center frequencies of three operating bands are 2.31, 2.91, and 3.35 GHz, respectively. The measured gain at above frequencies is 4.52, 4.29, and 4.57 dBi, respectively. Moreover, the measured isolation is higher than 16.7 dB within the frequency of interest.  相似文献   

16.
In this article, a substrate integrated waveguide (SIW) antenna utilizing odd‐mode spoof surface plasmon polariton (SSPP) for broadside radiation is proposed. Double gratings are etched on the top surface of SIW and the SSPP odd‐mode is excited on this hybrid SIW‐SSPP structure. The proposed SIW antenna has open‐circuit termination and can realize broadside radiation. A prototype of the SIW‐based odd‐mode antenna is fabricated. Reasonable accordance is achieved between measured results and simulated results. The antenna impedance bandwidth is about 5.5% (12.4~13.1 GHz) with |S11| < ?10 dB. Stable broadside radiation is also realized within the operating band of 12.3~13.3 GHz and the measured gain varies from 5.66 to 6.34 dB in the frequency band. The proposed broadside radiation antenna is suitable for wireless communication systems due to its compact structure and good radiation performances.  相似文献   

17.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

18.
This short communication presents a substrate integrated waveguide planar cavity slotted antenna array. The proposed antenna array, excited in its TE33 higher mode, incorporates a grounded coplanar‐waveguide (CPW) CPW‐feeding excitation mechanism. The electromagnetic energy is coupled to the air through 3 × 3 slot array etched on top metallic layer. The proposed antenna operates in the X‐band for the frequency range around the 10 to 11 GHz with resonances at 10.4 and 10.8 GHz frequencies. The proposed antenna array was fabricated and tested. Experimental results show good impedance matching with enhanced radiation characteristics, in terms of peak gain, cross‐polarization level, and low back‐radiation. The proposed antenna has the advantages of low‐footprints, lightweight, high gain, low‐cost, and ease of integration with other electronic circuits. With these characteristics, the proposed antenna array can find its applications in compact wireless digital transceivers.  相似文献   

19.
A multi‐band directional multiple‐input–multiple‐output (MIMO) antenna system is presented based on a rectangular loop excited Quasi‐Yagi configuration. A 64% reduction in size is obtained using a rectangular meandered element as well as a small ground plane. The proposed two‐element MIMO antenna system covers the Telemetry L‐band and several LTE/WLAN bands. It has a wide measured bandwidth of 689 MHz (1.897–2.586 GHz) in the desired band centered at 2 GHz, and a measured bandwidth of more than 168 MHz across rest of the bands. The MIMO antenna system has a total size of 45 × 120 × 0.76 mm3, with a single element size of 55 × 60 × 0.76 mm3. The non‐desired back‐lobe radiation which is obtained using a small ground plane, is significantly reduced by using a novel defected ground structure (DGS) as compared with the complex techniques present in literature. The proposed DGS provides a high measured front‐to‐back ratio of 14 dB at 2 GHz and 11 dB in other bands. A maximum measured realized gain of 5.8 dBi is obtained in the desired band using a single parasitic director element. The proposed MIMO antenna system has a minimum measured radiation efficiency of 70%, isolation of 12 dB, and envelope correlation coefficient of 0.098 within all bands which ensures very good MIMO performance.  相似文献   

20.
A planar dual circularly polarized slot antenna is presented. The designed antenna has two tilted “8” shaped slots fed by microstrip lines, one each for transmission (TX) and reception (RX) operations. The isolation between the two ports (TX and RX) is augmented by means of an interdigital capacitor based bandstop filter. The proposed antenna has an impedance bandwidth of 361 MHz centered at 2.293 GHz (2.113‐2.474 GHz) with the isolation between the ports being >17.6 dB which goes up to a value as high as 46 dB within the band of operation. The 3 dB axial ratio (AR) bandwidth is 11.52% centered at 2.1275 GHz (2.005‐2.25 GHz). Because of its high inter‐port isolation within the AR bandwidth, the design is suitable as a full‐duplex antenna for applications in S‐band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号