首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
We propose a simple solution to the problem of efficient stack evaluation of LRU multiprocessor cache memories with arbitrary set-associative mapping. It is an extension of the existing stack evaluation techniques for all set-associative LRU uniprocessor caches. Special marker entries are used in the stack to represent data blocks (or lines) deleted by an invalidation-based cache coherence protocol. A method of marker-splitting is employed when a data block below a marker in the stack is accessed. Using this technique, one-pass trace evaluation of memory access trace yields hit ratios for all cache sizes and set-associative mappings of multiprocessor caches in a single pass over a memory reference trace. Simulation experiments on some multiprocessor trace data show an order-of-magnitude speed-up in simulation time using this one-pass technique  相似文献   

2.
Memory-based key-value cache systems, such as Memcached and Redis, have become indispensable components of data center infrastructures and have been used to cache performance-critical data to avoid expensive back-end database accesses. As the memory is usually not large enough to hold all the items, cache replacement must be performed to evict some cached items to make room for the newly coming items when there is no free space. Many real-world workloads target small items and have frequent bursts of scans (a scan is a sequence of one-time access requests). The commonly used LRU policy does not work well under such workloads since LRU needs a large amount of metadata and tends to discard hot items with scans. Small decreases in hit ratio can result in large end-to-end losses in these systems. This paper presents MemSC, which is a scan-resistant and compact cache replacement framework for Memcached. MemSC assigns a multi-granularity reference flag for each item, which requires only a few bits (two bits are enough for general use) per item to support scan-resistant cache replacement policies. To evaluate MemSC, we implement three representative cache replacement policies (MemSC-HM, MemSC-LH, and MemSC-LF) on MemSC and test them using various workloads. The experimental results show that MemSC outperforms prior techniques. Compared with the optimized LRU policy in Memcached, MemSC-LH reduces the cache miss ratio and the memory usage of the resulting system by up to 23% and 14% respectively.  相似文献   

3.
传统的缓存替换策略,如广泛使用的LRU算法,在程序工作集大于缓存容量的情况下,不能有效开发流式数据的重用性,导致缓存性能很差.文中提出一种流特性制导的缓存分配策略(SAGA).该策略利用流检测引擎来发掘程序中的流特性信息,进而动态地在发生缓存缺失时指导是否为缺失数据分配缓存块,最终提高数据缓存的性能.实验表明,对于SPEC2000FP程序集,在1MB缓存上,比较于LRU策略,使用SAGA策略时缓存的缺失平均减少了31%,程序平均CPI降低4%.  相似文献   

4.
Web缓存是用来解决网络访问延迟和网络拥塞问题,缓存替换策略直接影响缓存的命中率。为此,提出一种朴素贝叶斯(NB)分类器重访概率预测的Web缓存替换策略;根据用户之前访问日志,通过分区操作提取多项特征来表示每次访问的对象,并构建特征数据集;训练NB分类器,用来确定缓存中对象被再次访问的概率,为对象分配权重;结合LRU策略来合理删除一些对象。仿真结果表明,提出的策略在保证较高命中率的同时有效降低了执行时间。  相似文献   

5.
Given N request streams and L⩽N LRU caches, the cache assignment problem asks to which cache each stream should be assigned in order to minimize the overall miss rate. An efficient solution to this problem is provided, based on characterizing each stream using the stack reference model and characterizing the interaction of the streams using a bursty stream model. It is shown that for Bernoulli (purely random) mixing of streams, the optimal cache assignment is to have one cache per stream. In practice streams are mixed in a way that is much “burstier” than can be represented by the Bernoulli model. Therefore a method is presented for superposition of bursty streams. The performance of the methods developed for bursty stream superposition and cache assignment are tested using trace data obtained from the database system DB2. The resulting cache assignment recommendations are then applied to the DB2 system, and considerable performance improvement is found to result  相似文献   

6.
传统的缓存替换算法由于不能适应应用程序的流式访问行为而导致缓存性能不佳.设计基于周期检测的预测方法,分析程序访存重用距离的规律性和流式访问的复杂性,提出用重用距离预测能同时适应简单流和复杂流访问模式的RDP算法.RDP的基本思想是预测重用距离并动态维护重用距离计数,动态调整缓存数据的替换顺序,通过流采样缩减存储开销.实验结果表明,RDP算法能够很好地适应程序中多样化的流访问模式,其总体性能优于LRU算法和DIP算法,在32MB缓存上比传统LRU算法平均减少了27.5%的缓存缺失.  相似文献   

7.
Client cache is an important technology for the optimization of distributed and centralized storage systems. As a representative client cache system, the performance of CacheFiles is limited by transition faults. Furthermore, CacheFiles just supports a simple LRU policy with a tightly-coupled design. To overcome these limitations, we propose to employ Stable Set Model (SSM) to improve CacheFiles and design an enhanced CacheFiles, SAC. SSM assumes that data access can be decomposed to access on some stable sets, in which elements are always repeatedly accessed or not accessed together. Using SSM methods can improve the cache management and reduce the effect of transition faults. We also adopt loosely- coupled methods to design prefetch and replacement policies. We implement our scheme on Linux 2.6.32 and measure the execution time of the scheme with various file I/O benchmarks. Experiments show that SAC can significantly improve I/O performance and reduce execution time up to 84%0, compared with the existing CacheFiles.  相似文献   

8.
9.
E. Torng 《Algorithmica》1998,20(2):175-200
Paging (caching) is the problem of managing a two-level memory hierarchy in order to minimize the time required to process a sequence of memory accesses. In order to measure this quantity, which we refer to as the total memory access time, we define the system parameter miss penalty to represent the extra time required to access slow memory. We also introduce the system parameter page size. In the context of paging, miss penalty is quite large, so most previous studies of on-line paging have implicitly set miss penalty =∞ in order to simplify the model. We show that this seemingly insignificant simplification substantially alters the precision of derived results. For example, previous studies have essentially ignored page size. Consequently, we reintroduce the miss penalty and page size parameters to the paging problem and present a more accurate analysis of on-line paging (and caching). We validate using this more accurate model by deriving intuitively appealing results for the paging problem which cannot be derived using the simplified model. First, we present a natural, quantifiable definition of the amount of locality of reference in any access sequence. We also point out that the amount of locality of reference in an access sequence should depend on page size among other factors. We then show that deterministic and randomized marking algorithms such as the popular least recently used (LRU) algorithm achieve constant competitive ratios when processing typical access sequences which exhibit significant locality of reference; this represents the first competitive analysis result which (partially) explains why LRU performs as well as it is observed to in practice. Next, we show that finite lookahead can be used to obtain algorithms with improved competitive ratios. In particular, we prove that modified marking algorithms with sufficient lookahead achieve competitive ratios of 2. This is in stark contrast to the simplified model where lookahead cannot be used to obtain algorithms with improved competitive ratios. We conclude by using competitive analysis to evaluate the benefits of increasing associativity in caches. We accomplish this by specifying an algorithm and varying the system configuration rather than the usual process of specifying the system configuration and varying the algorithm. Received August 7, 1995; revised May 7, 1996, and August 6, 1996.  相似文献   

10.
The effectiveness of the buffer cache replacement is critical to the performance of I/O systems. In this paper, we propose a degree of inter-reference gap (DIG) based block replacement scheme. This scheme keeps the simplicity of the least recently used (LRU) scheme and does not depend on the detection of access regularities. The proposed scheme is based on the low inter-reference recency set (LIRS) scheme, which is currently known to be very effective. However, the proposed scheme employs several history information items whereas the LIRS scheme uses only one history information item. The overhead of the proposed scheme is almost negligible. To evaluate the performance of the proposed scheme, the comprehensive trace-driven computer simulation is used in general access patterns. Our simulation results show that the cache hit ratio (CHR) in the proposed scheme is improved as much as 65.3% (with an average of 26.6%) compared to the LRU for the same workloads, and up to 6% compared to the LIRS in multi3 trace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号