首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 765 毫秒

1.  一种基于人脸垂直对称性的变形2DPCA算法  被引次数:1
   曾岳  冯大政《计算机工程与科学》,2011年第33卷第7期
   本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算法(S2DPCA),该算法最大程度地利用了协方差鉴别信息,用更少的系数表示一张人脸图像。通过在ORL的实验比较表明,该算法与PCA算法相比降低了计算复杂性,与2DPCA方法和PCA方法相比提高了人脸识别率,在识别率方面优于传统算法(PCA(Eigenfaces)、ICA、Kernel Eigenfaces),同时也压缩了人脸的存储空间。    

2.  二维主元分析在人脸识别中的应用研究  被引次数:12
   何国辉  甘俊英《计算机工程与设计》,2006年第27卷第24期
   结合二维主元分析(two-dimensional principal component analysis,2DPCA)的特点,将2DPCA算法用于人脸识别。它与主元分析(principal component analysis,PCA)的不同之处在于,2DPCA算法以图像矩阵为分析对象;而PCA算法以图像的一维向量为分析对象。2DPCA算法是直接利用原始图像矩阵构造图像的协方差矩阵。而PCA算法需对原始图像矩阵先降维、再将降维矩阵转换成列向量,然后构造图像的协方差矩阵。为了测试和评估2DPCA算法的性能,在ORL(olivetti research laboratory)与Yale人脸数据库上进行了实验,结果表明,2DPCA算法用于人脸识别的正确识别率高于PCA算法。同时,也显示了2DPCA算法在特征提取方面比PCA算法更有效。    

3.  用于目标识别的PCA-SC形状匹配算法  被引次数:2
   黄伟国  顾超  朱忠奎《光学精密工程》,2013年第21卷第8期
   基于形状上下文(Shape Context)算法并融合主成分分析(PCA)的降维思想,提出了一种PCA-SC算法来提高形状匹配和目标识别的速度和抗噪能力.该算法将SC算法获取的特征矩阵构成协方差矩阵,按照特征值由大到小的准则进行降维,形成新的特征矩阵用于匹配和识别,既抑制了噪声干扰,提高了识别准确率,又能够提高匹配速度,易于满足工程应用对实时性的要求.利用MNIST图像数据库中的图像进行了实验分析,结果表明,PCA-SC算法在保持了SC算法原有的定位准确、抑制噪声等优点的基础上,识别速度提高了1倍;准确率达到了96.15%,提高了约0.5%;而且抗噪性更强,可用于匹配和识别较复杂的形状和目标.该算法基本满足匹配和识别对速度、准确率和抗干扰性等方面的要求.    

4.  基于MCD稳健估计的PCA人脸识别算法  
   张蓓  王顺芳《计算机工程与设计》,2015年第3期
   针对人脸识别中,识别效果易受人脸修饰、部分遮挡、噪声干扰等不确定因素影响的问题,提出一种MCDPCA人脸识别算法以改进识别效果。基于主成分分析(PCA)进行特征脸提取,结合最小协方差行列式方法(MCD)进行异常点检测和抗噪。针对人脸图像使用MCD算法,求出稳健的协方差矩阵估计,基于此协方差估计矩阵使用PCA技术提取重要的人脸特征用于识别。实验结果表明,在有遮挡和噪声干扰的情况下,相比传统PCA方法,该方法明显提高了人脸图像识别率。    

5.  基于主成分分析法的电力系统同调机群识别  被引次数:2
   安军  穆钢  徐炜彬《电网技术》,2009年第33卷第3期
   提出了一种基于主成分分析(principal component analysis,PCA)的电力系统同调机群分群识别方法。利用PCA可以保留源数据中的主要信息,采用发电机角速度作为源数据,可以获取协方差矩阵及协方差矩阵的特征根和特征相量,由此确定发电机角速度的主成分,然后通过比较各发电机对主成分的载荷系数实现对发电机的同调分群。中国电力科学研究院36节点纯交流系统算例表明,该方法计算简单,易于实现,避免了模型参数对分群的影响。    

6.  基于描述特征的人脸识别研究  被引次数:5
   高全学  潘泉  梁彦  张洪才  程咏梅《自动化学报》,2006年第32卷第3期
   针对基于主成分分析识别人脸存在计算复杂、不能准确地估计训练图像的协方差矩阵等问题,提出了一种基于描述特征的人脸识别算法(Expressive feature face recognitionalgorithm, EFFRA).该算法用训练图像的右奇异向量代替PCA求解的子空间的基向量,避免了将人脸图像转换成图像向量,明显降低了计算复杂性.进一步研究发现,EFFRA提取的每一个主成分向量中含有冗余,在此基础上,利用PCA实现了EFFRA的简化算法(MEFFRA),在ORL和Essex数据库上的实验结果表明,EFFRA及MEFFRA明显优于特征脸算法,MEFFRA的识别精度略好于EFFRA,但明显减少了对存储空间的需求.    

7.  低对比度下水印图像缺陷检测  
   李全文  阮波  徐可佳  于勇  肖劲飞《计算机应用》,2010年第30卷第11期
   在主成分分析(PCA)及核主成分分析(KPCA)进行特征提取基本原理的基础上,提出了一种改进的提取非线性的图像特征来重建图像方法,应用于嵌入式防伪水印图案缺陷的检测.该方法使得图像协方差矩阵维数大幅下降,且有效地保留了嵌入式防伪水印图案的信息,通过比较检测出图像的缺陷.实验结果表明,该方法对输入数据实现了有效的降维,缩短了计算时间,提高了检测效果和精确度.KPCA算法相比原有的PCA算法具有更高的性能指标,适用范围更广.    

8.  基于双向二维主成分分析的掌纹识别  
   秦娜  金炜东  刘景波《微计算机信息》,2009年第25卷第4期
   掌纹识别是一门新兴的生物特征识别技术.使用主成分分析对图像向量进行处理,向量维教一般都很高.二维主成分分析是直接采用二维图像矩阵来构建方差矩阵,与一维主成分分析相比能更精确地计算原始数据的协方差矩阵,双向二维主成分分析是二维主成分分析的改进算法,将其应用于掌纹识别,通过在水平和垂直2个方向上各执行1次二维主成分分析运算,消除了掌纹图像行和列的相关性,运用新准则选取了更适合于分类的主分量,大大压缩了特征的维数.在香港Poly-technic Universitv的Palmprint Database测试结果表明,该方法具有更高的识别率和更低的计算复杂度.    

9.  基于四元数主成分分析的人脸识别算法  被引次数:1
   黎云汉  朱善安  祝磊《信号处理》,2007年第23卷第2期
   本文把四元数矩阵运算引入主成分分析,提出了一种应用于彩色图像的四元数主成分分析人脸识别算法。该算法首先用四元数矩阵模型表示彩色人脸图像,然后求该四元数矩阵的协方差矩阵,及其特征向量,通过将彩色人脸图像投影到四元数协方差矩阵特征向量组成的特征空间,比较其与已知人脸在特征空间的位置,从而达到识别彩色人脸的目的。实验表明,采用该算法能得到比经典的特征脸法更高的识别率。    

10.  一种基于动态反馈的人脸识别融合方法  
   范冠杰  陈万培  陈才扣  胡学龙  代修波《无线电工程》,2014年第5期
   提出了一种基于动态反馈的融合加权主成分分析(WPCA)和加权线性判别分析(WLDA)的人脸识别方法 (DFWPCA+WLDA)。该方法首先进行主成分分析(PCA)降维得到投影矩阵,然后通过不断的反馈信息得到权值,从而加权协方差矩阵,优化投影矩阵,最后采用加权线性鉴别分析(LDA)进一步提取分类特征。动态反馈能很好地利用样本的有用信息,加权LDA还能做到更好的分类。在ORL和YALE人脸库上的实验表明,该方法有效且性能优于PCA+LDA和WPCA+WLDA。    

11.  基于主元分析的倾斜车牌图像校正方法研究  被引次数:6
   朱程辉  吴德会《微电子学与计算机》,2006年第23卷第1期
   文章提出了一种基于主元分析(PCA)的车牌图像倾斜校正新方法。该方法将原始的像素坐标矩阵经过中心化后转换为2维协方差矩阵,再奇值分解为能反映图像倾斜方向的2维对角矩阵和坐标变换矩阵。校正算法的时间复杂度分析与实验结果均表明:相对于Hough变换等校正方法,PCA方法缩短了计算时间1-2个数量级,并且在污迹、光照不均等条件下也能获得较好效果。    

12.  基于MapReduce的主成分分析算法研究  
   易秀双  刘勇  李婕  王兴伟《计算机科学》,2017年第44卷第2期
   随着MapReduce并行化框架的流行,各种数据挖掘算法的并行化也成为了当下研究的热点。主成分分析(Principle Components Analysis,PCA)算法的并行化也得到了越来越多的关注。通过对目前PCA算法的并行化研究的成果进行总结,发现这些PCA算法并行程度并不完全,特别是特征值计算过程。整个PCA算法流程分为两个阶段:相关系数矩阵求解阶段和矩阵的奇异值分解(Singular Value Decomposition,SVD)阶段。通过当前最流行的并行框架MapReduce,融合矩阵的QR分解,提出了一种奇异值分解的并行实现方法。利用随机产生的不同维度大小的双浮点矩阵比较并行奇异值分解相对传统串行环境下的算法效率的提升情况,并分析算法效率。之后,将并行奇异值分解融合到PCA算法中,同时提出相关系数矩阵的并行计算过程,将PCA计算的两个部分完全并行化。利用不同维度的矩阵对提出的并行PCA算法与已存在的未完全并行PCA算法、常规的PCA算法的运算速度进行比较,分析完全并行化PCA算法的加速比,最终得出所提算法在处理一定规模的大数据情况下的时间消耗要少许多。    

13.  基于PCA算法的人脸识别方法研究比较  被引次数:1
   孙涛  谷士文  费耀平《现代电子技术》,2007年第30卷第1期
   主成分分析(Principal Component Analysis,PCA)方法是人脸识别技术中一种广泛应用的数据降维技术。当通过使用PCA变换获得的主成分去重建原始人脸图像时,能使均方误差最小。在传统的PCA基础上,Yang等人提出了2DPCA方法,避免了从图像矩阵向一维向量的转换,并在人脸识别中获得了满意的效果。文章对这两种方法做了理论上比较并给予实验数据支持,实验证明,2DPCA在识别方面略优于传统PCA算法。    

14.  基于NSCT和PCA变换域的遥感图像融合算法  被引次数:1
   孙岩  赵春晖  江凌《沈阳工业大学学报》,2011年第3期
   为使融合后的图像在尽可能保持原图像光谱信息的同时,有效提高空间细节信息,提出了一种新的基于非下采样Contourlet变换(NSCT)和主成分分析(PCA)的全色图像和多光谱图像融合算法.对多光谱图像进行PCA变换得到主元分量,将处理后的主元分量与全色图像进行NSCT分解,针对低频子带系数选择提出了一种基于窗口与局部方差相结合的融合策略;在高频子带系数选择上,提出了基于区域线性相关测定的融合策略.进行非下采样Contourlet逆变换和PCA逆变换,得到具有高空间质量的多光谱图像.实验结果表明,提出的算法在保留光谱信息和提高空间细节信息的综合性能上有所提高,能够取得较好的融合效果.    

15.  基于协方差交叉算法的多源遥感图像融合方法  
   崇元  徐晓刚  徐贯雷  邵承勇《电光与控制》,2013年第6期
   协方差交叉算法是分布式信息融合中不需要计算局部估计误差之间的相关性、通过优化一定的目标函数得到的一种保守的分布式融合估计方法。这种方法为图像融合增强提供了一种新思路。介绍了一维协方差交叉算法,把此方法扩展到二维信号和图像融合上,提出了一种基于协方差交叉算法的图像融合方法,最后对融合后的图像与已有的融合方法进行比较。结果表明,融合效果优于小波方法、经验模式分解方法和非负矩阵分解方法。    

16.  基于SIFT和PCA的图像感知哈希方法  
   孙锐  闫晓星  高隽《电路与系统学报》,2013年第1期
   提出了一种新颖的基于尺度不变特征变换(SIFT)和主成分分析(PCA)的感知哈希方法。SIFT特征在通常的图像处理中具有很强的稳定性,并具有尺度和旋转不变性,通过对哈希生成两阶段框架的详细分析,SIFT算法用来提取图像的局部特征点,PCA用来对特征数据的信息压缩。每个特征点的PCA基的叠加构成图像哈希,在叠加中采用了伪随机处理,增强了算法安全性,图像之间的相似度通过哈希的归一化相关值来确定。实验分析表明该方法对各种复杂攻击,如图像旋转、光照变化、图像滤波等具有较好的稳健性,对比基于非负矩阵分解的图像哈希方法在图像识别应用中具有更好的性能。    

17.  基于随机矩阵变换的快速PCA算法  
   王晓伟  闫德勤  刘益含《微型机与应用》,2013年第20期
   主成分分析PCA(PrincipleComponentAnalysis)是一种重要的分析方法,广泛应用于图像检索、机器学习、模式识别等领域。随着近年来数据维数越来越大,算法的稳定性、时间复杂度和内存使用成了PCA进一步应用所必须要解决的问题。为此提出一种快速算法,该算法利用随机矩阵构造卷数据降维矩阵,在保持点与点之间“核距离”不变的情况下,将待分解矩阵变换成一个低维矩阵。在没有偏差的情况下,将对原始大矩阵的分解变成对这个低维矩阵的分解,大幅降低了时间复杂度,减少了对内存的使用,同时增加了算法的稳定性,从而在根本上解决了上述3个问题。    

18.  分块双向二维主成分分析与模糊分类的掌纹识别  
   翟林  潘新  刘霞  郜晓晶  宁丽娜  韩璠《计算机应用与软件》,2015年第4期
   掌纹识别是一门新兴的生物特征识别技术。提出基于分块双向二维主成分分析(M(2D)2 PCA)和模糊分类的掌纹识别方法。该算法利用M(2D)2 PCA提取掌纹的局部特征,并利用模糊分类策略。这种方法可以有效提取掌纹的局部特征,并且直接对子图像矩阵进行特征抽取,能够精确计算协方差矩阵的特征向量;分类阶段引入模糊理论,应用于掌纹识别问题。最后使用北京交通大学掌纹数据库进行识别实验,结果表明,该方法可得到更高的识别率和更少的识别时间。    

19.  基于亮度与火焰区域边缘颜色分布的火焰检测*  被引次数:3
   许宏科  房建武  文常保《计算机应用研究》,2010年第27卷第9期
   为改善目前的火焰检测方法对环境适应能力不强的情况,提出一种基于亮度与火焰区域边缘颜色分布的火焰检测方法。主要采用二值重构、形态学算法以及边界追踪计算火焰区域边缘颜色分布矩阵,对得到的颜色分布矩阵进行主成分分析(PCA),并用PCA中协方差特征值分量约束BP神经网络的输入向量,从而准确进行了火焰检测。实验结果表明,此算法计算简单,能准确识别多种背景下的火焰图像。    

20.  改进的分块2DPCA人脸识别方法  
   吴天德  戴在平《通信技术》,2011年第10期
   将样本中间值融入模块二维主成分分析方法进行人脸识别。该算法首先对图像矩阵进行了模块化得到子图像矩阵,之后直接把子图像矩阵集作为样本集。与原始模块二维主成分分析算法不同之处在于,将子块的类内中间值引入到总体协方差矩阵的求解过程中。通过ORL数据库的测试,融合后的算法继承了模块二维主成分分析的强鲁棒性,提高了识别率,证明了改进后的方法相对普通的二维主成分分析和模块二维主成分分析算法而言,性能得到提升。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号