首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Video-on-demand service in wireless networks is one important step to achieving the goal of providing video services anywhere anytime. Typically, carrier mobile networks are used to deliver videos wirelessly. Since every video stream comes from the base station, regardless of what bandwidth sharing techniques are being utilized, the media stream system is still limited by the network capacity of the base station. The key to overcome the scalability issue is to exploit resources available at mobile clients in a peer-to-peer setting. We observe that it is common to have a carrier mobile network and a mobile peer-to-peer network co-exist in a wireless environment. A feature of such hybrid environment is that the former offers high availability assurance, while the latter presents an opportunistic use of resources available at mobile clients. Our proposed video-on-demand technique, PatchPeer, leverages this network characteristic to allow the video-on-demand system scale beyond the bandwidth capacity of the server. Mobile clients in PatchPeer are no longer passive receivers, but also active senders of video streams to other mobile clients. Our extensive performance study shows that PatchPeer can accept more clients than the current state-of-the-art technique, while maintaining the same Quality-of-Service to clients.
Fuyu LiuEmail:

Tai T. Do   is a Ph.D. student in Computer Science at the University of Central Florida, working in the Data Systems Laboratory. He received a B.S. degree in Electrical Engineering from the University of Oklahoma in 2001. His main research interests are Distributed Systems and Databases (Peer-to-Peer Systems, Distributed Monitoring Queries), Communications and Networking (Video Delivery Techniques, Wireless Communication Protocols), Decision Support Systems (Real-time Route Diversion Systems), and Security and Privacy (Anonymity for Location-based Services). Tai T. Do is a recipient of the UCF Order of Pegasus, i.e. UCF Best Student Award, class of 2008. Kien A. Hua   received the B.S. degree in Computer Science, M.S. and Ph.D. degrees in Electrical Engineering, all from the University of Illinois at Urbana-Champaign, in 1982, 1984, and 1987, respectively. Form 1987 to 1990 he was with IBM Corporation. He joined the University of Central Florida in 1990, and is currently a professor in the School of Computer Science. Dr. Hua has published widely including several papers recognized as best papers at various international conferences. He has served as Conference Chair, Vice-Chair, Associate Chair, Demo Chair, and Program Committee Member for numerous ACM and IEEE conferences. Currently, he is on the editorial boards of Journal of Multimedia Tools and Applications and International Journal of Advanced Information Technology. Dr. Hua is an IEEE Fellow. Ning Jiang   received the Ph.D. degree in Computer Science from the University of Central Florida. Currently, he is working at the Office Lab at Microsoft Corp. His main research interests are Mobile computing, Data mining, and Network security. Fuyu Liu   is a Ph.D. student in Computer Science at the University of Central Florida, working in the Data Systems Laboratory. His main research interests are Distributed Systems and Databases (Distributed Monitoring Queries, Mobile COmputing), and Security and Privacy (Anonymity for Location-based Services).   相似文献   

2.
Trust is required in a file sharing peer-to-peer system to achieve better cooperation among peers. In reputation-based peer-to-peer systems, reputation is used to build trust among peers. In these systems, highly reputable peers will usually be selected to upload requested files, decreasing significantly malicious uploads in the system. However, these peers need to be motivated by increasing the benefits that they receive from the system. In addition, it is necessary to motivate free riders to contribute to the system by sharing files. Malicious peers should be also motivated to contribute positively by uploading authentic files instead of malicious ones. Service differentiation is required to motivate peers to get involved by sharing and uploading the requested files. To provide the right incentives for peers to contribute to the system, the new concept of Contribution Behavior is introduced for partially decentralized peer-to-peer systems. In this paper, the Contribution Behavior of the peer is used as a guideline for service differentiation instead of peer’s reputation. Both Availability and Involvement of the peer are used to assess its Contribution Behavior. Performance evaluations confirm the ability of the proposed scheme to effectively identify both free riders and malicious peers and reduce the level of service provided to them. On the other hand, good peers receive better service. Simulation results also confirm that based on a Rational Behavior, peers are motivated to increase their contribution to receive services. Moreover, using our scheme, peers must continuously participate, reducing significantly the milking phenomenon.
Raouf BoutabaEmail:

Loubna Mekouar   received her M.Sc. degree in Computer Science from the University of Montreal in 1999. She is currently a Ph.D. student at the School of Computer Science at the University of Waterloo. Her research interests include trust and reputation in peer-to-peer systems, Quality of Service in multimedia applications, and network and distributed systems management. Youssef Iraqi   received his B.Sc. in Computer Engineering, with high honors, from Mohammed V University, Morocco, in 1995. He received his M.Sc. and Ph.D. degrees in Computer Science from the University of Montreal in 2000 and 2003 respectively. From 1996 to 1998, he was a research assistant at the Computer Science Research Institute of Montreal, Canada. From 2003 to 2005, he was a research assistant professor at the David R. Cheriton School of Computer Science at the University of Waterloo. He is currently an assistant professor at Dhofar University, Salalah, Oman. His research interests include network and distributed systems management, resource management in multimedia wired and wireless networks, and peer-to-peer networking. Raouf Boutaba   received the M.Sc. and Ph.D. Degrees in Computer Science from the University Pierre & Marie Curie, Paris, in 1990 and 1994 respectively. He is currently a Professor of Computer Science at the University of Waterloo. His research interests include network, resource and service management in wired and wireless networks. Dr. Boutaba is the founder and Editor-in-Chief of the IEEE Transactions on Network and Service Management and on the editorial boards of several other journals. He is currently a distinguished lecturer of the IEEE Communications Society, the chairman of the IEEE Technical Committee on Information Infrastructure. He has received several best paper awards and other recognitions such as the premier’s research excellence award.   相似文献   

3.
Unlabeled training examples are readily available in many applications, but labeled examples are fairly expensive to obtain. For instance, in our previous works on classification of peer-to-peer (P2P) Internet traffics, we observed that only about 25% of examples can be labeled as “P2P”or “NonP2P” using a port-based heuristic rule. We also expect that even fewer examples can be labeled in the future as more and more P2P applications use dynamic ports. This fact motivates us to investigate the techniques which enhance the accuracy of P2P traffic classification by exploiting the unlabeled examples. In addition, the Internet data flows dynamically in large volumes (streaming data). In P2P applications, new communities of peers often join and old communities of peers often leave, requiring the classifiers to be capable of updating the model incrementally, and dealing with concept drift. Based on these requirements, this paper proposes an incremental Tri-Training (iTT) algorithm. We tested our approach on a real data stream with 7.2 Mega labeled examples and 20.4 Mega unlabeled examples. The results show that iTT algorithm can enhance accuracy of P2P traffic classification by exploiting unlabeled examples. In addition, it can effectively deal with dynamic nature of streaming data to detect the changes in communities of peers. We extracted attributes only from the IP layer, eliminating the privacy concern associated with the techniques that use deep packet inspection.
Jing LiuEmail:

Bijan Raahemi   is an assistant professor at the Telfer School of Management, University of Ottawa, Canada, with cross-appointment with the School of Information Technology and Engineering. He received his Ph.D. in Electrical and Computer Engineering from the University of Waterloo, Canada, in 1997. Prior to joining the University of Ottawa, Dr. Raahemi held several research positions in Telecommunications industry, including Nortel Networks and Alcatel-Lucent, focusing on Computer Networks Architectures and Services, Dynamics of Internet Traffic, Systems Modeling, and Performance Analysis of Data Networks. His current research interests include Knowledge Discovery and Data Mining, Information Systems, and Data Communications Networks. Dr. Raahemi’s work has appeared in several peer-reviewed journals and conference proceedings. He also holds 10 patents in Data Communications. He is a senior Member of the Institute of Electrical and Electronics Engineering (IEEE), and a member of the Association for Computing Machinery (ACM). Weicai Zhong   is a post-doctoral fellow at the Telfer School of Management, University of Ottawa, Canada. He received a B.S. degree in computer science and technology from Xidian University, Xi’an, China, in 2000 and a Ph.D. in pattern recognition and intelligent systems from Xidian University in 2004. Prior to joining the University of Ottawa, Dr. Zhong was a senior statistician in SPSS Inc. from Jan. 2005 to Dec. 2007. His current research interests include Internet Traffic Identification, Data Mining, and Evolutionary Computation. He is a member of the Institute of Electrical and Electronics Engineering (IEEE). Jing Liu   is an Associate Professor with Xidian University, China. She received a B.S. degree in computer science and technology from Xidian University, Xi’an, China, in 2000, and a Ph.D. in circuits and systems from Xidian University in 2004. Her research interests include Data Mining, Evolutionary Computation, and Multiagent Systems. She is a member of the Institute of Electrical and Electronics Engineering (IEEE).   相似文献   

4.
Mobile P2P networks possess particular characteristics which make accessibility of services deployed on peers a challenge. This has to be taken into account when considering robustness of applications that depend on successfully accessing a set of services. While ensuring robustness is traditionally handled through replication or redundancy, those solutions are not readily applicable to decentralized and dynamic networks. Instead, current solutions are based on efficient P2P structure maintenance or unstructured network search algorithms. A novel and alternative method proposed in this paper is based on the observation that some redundancy may exist between services offered on the network, a fact which could be used to recreate an unavailable service from services accessible to a peer. Instead of adding redundancy to the system, our solution exploits the already existing redundancy to improve robustness of mobile P2P applications. We model the interaction with services as finite-state transducers and propose a heuristic to obtain redundancy between any pair of services. Then, a set of algorithms that uses this inter-service redundancy to recreate the interaction with one service from the other is discussed. The computational cost is polynomial with respect to services’ size, and in practice, the non-redundant functionality and related control need to be implemented locally.
Abdulmotaleb El SaddikEmail:

Andrew Roczniak   is a software architect specializing in semantic and mobile computing with over 10 years’ industry experience. He is the author or co-author of a number of peer-reviewed articles and serves as a reviewer for conference proceedings and journal publications. He obtained his Ph.D and Ma.Sc in electrical engineering in 2008 and 1996 respectively. He is the recipient of the IBM Student Conference Grant at the ACM Multimedia Conference in Singapore, 2005. Abdulmotaleb El Saddik   is University Research Chair and Professor, SITE, University of Ottawa and recipient of the Professional of the Year Award (2008), the Friedrich Wilhelm-Bessel Research Award from Germany’s Alexander von Humboldt Foundation (2007) the Premier’s Research Excellence Award (PREA 2004), and the National Capital Institute of Telecommunications (NCIT) New Professorship Incentive Award (2004). He is the director of the Multimedia Communications Research Laboratory (MCRLab). He is a Theme co-Leader in the LORNET NSERC Research Network. He is Associate Editor of the ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP), IEEE Transactions on Multimedia (IEEE TMM) and IEEE Transactions on Computational Intelligence and AI in Games (IEEE TCIAIG) and Guest Editor for several IEEE Transactions and Journals. Dr. El Saddik has been serving on several technical program committees of numerous IEEE and ACM events. He has been the General Chair and/or Technical Program Chair of more than 20 international conferences symposia and workshops on collaborative hapto-audio-visual environments, multimedia communications and instrumentation and measurement. He was the general co-chair of ACM MM 2008. He is leading researcher in haptics, service-oriented architectures, collaborative environments and ambient interactive media and communications. He has authored and co-authored two books and more than 200 publications. He has received research grants and contracts totaling more than $10 million and has supervised more than 90 researchers. His research has been selected for the BEST Paper Award three times. Dr. El Saddik is a Senior Member of ACM, an IEEE Distinguished Lecturer and a Fellow of the IEEE.   相似文献   

5.
6.
Providing real-time and QoS support to stream processing applications running on top of large-scale overlays is challenging due to the inherent heterogeneity and resource limitations of the nodes and the multiple QoS demands of the applications that must concurrently be met. In this paper we propose an integrated adaptive component composition and load balancing mechanism that (1) allows the composition of distributed stream processing applications on the fly across a large-scale system, while satisfying their QoS demands and distributing the load fairly on the resources, and (2) adapts dynamically to changes in the resource utilization or the QoS requirements of the applications. Our extensive experimental results using both simulations as well as a prototype deployment illustrate the efficiency, performance and scalability of our approach.
Vana Kalogeraki (Corresponding author)Email:

Thomas Repantis   is a PhD candidate at the Computer Science and Engineering Department of the University of California, Riverside. His research interests lie in the area of distributed systems, distributed stream processing systems, middleware, peer-to-peer systems, pervasive and cluster computing. He holds an MSc from the University of California, Riverside and a Diploma from the University of Patras, Greece, and has interned with IBM Research, Intel Research and Hewlett-Packard. Yannis Drougas   is currently a Ph.D. student in the Department of Computer Science and Engineering at University of California, Riverside. He received the Diploma in Electrical and Computer Engineering from Technical University of Crete, Greece in 2003. His research interests include peer-to-peer systems, real-time systems, stream processing systems, resource management and sensor networks. Vana Kalogeraki   is currently an Associate Professor in the Department of Computer Science and Engineering at the University of California, Riverside. She received the Ph.D. in Electrical and Computer Engineering from the University of California, Santa Barbara, in 2000. Previously she was an Assistant Professor in the Department of Computer Science and Engineering at the University of California, Riverside (2002–2008) and held a Research Scientist Position at Hewlett Packard Labs in Palo Alto, CA (2001–2002). Her research interests include distributed systems, peer-to-peer systems, real-time systems, resource management and sensor networks.   相似文献   

7.
Combining the advantages of Peer-to-Peer (P2P) content distribution concept and metadata driven adaptation of videos in compressed domain, in this paper, we propose a simple but scalable design of distributed adaptation and overlay streaming using MPEG-21 gBSD, called DAg-stream. The objective is not only to shift the bandwidth burden to end participating peers, but also to move the computation load for adapting video contents away from dedicated media-streaming/adaptation servers. It is an initiative to merge the adaptation operations and the P2P streaming basics to support the expansion of context-aware mobile P2P systems. DAg-stream organizes mobile and heterogeneous peers into overlays. For each video, a separate overlay is formed. No control message is exchanged among peers for overlay maintenance. We present a combination of infrastructure-centric and application end-point architecture. The infrastructure-centric architecture refers to a tree controller, named DAg-master, which is responsible for tree/overlay administering and maintenance. The application end-point architecture refers to video sharing, streaming and adaptation by the participating resourceful peers. The motivation for this work is based on the experiences and lessons learned so far about developing a video adaptation system for heterogeneous devices. In this article, we present our architecture and some experimental evaluations supporting the design concept for overlay video streaming and online adaptation.
Shervin ShirmohammadiEmail:

Razib Iqbal   is pursuing his Ph.D. degree in Computer Science at the University of Ottawa (uOttawa), Canada. His current research interests include — Distributed and online video adaptation, and video watermaking. Mr. Iqbal received his Masters and Bachelors degree, both in Computer Science, from uOttawa in 2006 and North South University, Bangladesh in 2003 respectively. He is a recipient of the uOttawa International Admission Scholarship for both his Masters and Ph.D. studies. Shervin Shirmohammadi   Associate Professor at the School of Information Technology and Engineering, University of Ottawa, Canada, joined the University as an Assistant Professor in 2004, after 4 years of industry experience as a Senior Software Architect and Project Manager that followed his Ph.D. degree in Electrical Engineering from the same University in 2000. His current research interests include Massively Multiuser Online Gaming (MMOG) and Virtual Environments, Application Layer Multicasting and Overlay Networks, Adaptive P2P Audio/Video Streaming, and Multimedia Assisted Rehabilitation Engineering. In addition to his academic publications, which include two Best Paper Awards, he has over a dozen technology transfers to the private sector. He is Editor-in-Chief of the International Journal of Advanced Media and Communications, Associate Editor of ACM Transactions on Multimedia Computing, Communications, and Applications, Associate Editor of Springer's Journal of Multimedia Tools and Applications, and also chairs or serves on the program committee of a number of conferences in multimedia, virtual environments and games, and medical applications. Dr. Shirmohammadi is a University of Ottawa Gold Medalist, a licensed Professional Engineer in Ontario, a Senior Member of the IEEE, and a Professional Member of the ACM.   相似文献   

8.
This paper presents an analytical model that helps understanding the common foundations of routing in DHTs and provides means for analytical comparison of different systems and different parameter combinations. In the proposed model, a logarithmic transformation is applied to the metric space embedding node identifiers. We show that in this transformed space - similarly to short-range connections in the real metric space - long-range connections have linear properties: connections are uniformly distributed and routing via long-range contacts progresses linearly toward the target. Using this transformation model, we introduce a λ long-range connection density parameter to characterize DHT routing and analyze common properties and differences between existing DHT routing mechanisms. For the the two extreme DHT families (“most random” and completely deterministic), we also present a detailed stochastic analysis of routing in the transformed space and express analytically the expected value of the number of routing hops.
Róbert SzabóEmail:

Peter Kersch   has received MSc degree in computer science from Budapest University of Technology and Economics in 2003. He is currently a PhD candidate in the same institution. His main research interests include modelling, performance analysis and design of self-organizing algorithms, P2P networks and ad hoc networks. Dr. Robert Szabo   is an associate professor at the Department of Telecommunication and Media Informatics, Budapest University of Technology (BME). He is the head of the High Speed Networks Laboratory at BME; and is the president of the Telecommunications Section of the Scientific Association for Infocommunications, Hungary. His main research interests are architectures, protocols and performance of communication networks.   相似文献   

9.
In both academia and industry, peer-to-peer (P2P) applications have attracted great attentions. P2P applications such as Napster, Gnutella, FastTrack, BitTorrent, Skype and PPLive, have witnessed tremendous success among the end users. Unlike a client-server based system, peers bring with them serving capacity. Therefore, as the demand of a P2P system grows, the capacity of the network grows, too. This enables a P2P application to be cheap to build and superb in scalability. In this paper, we survey the state of the art of the research and the development of P2P content delivery application. Using examples of the deployed P2P applications and research prototypes, we survey the best practices in P2P overlay building and P2P scheduling. We hope that the information may help the readers to build a reliable, robust P2P content delivery application.
Jin LiEmail:

Dr. Jin Li   is currently a principal researcher managing the communication system subgroup at Microsoft Research (Redmond, WA). He received the Ph.D. with distinction from Tsinghua University (Beijing, China) in 1994. Prior to joining Microsoft in 1999, he has worked at the University of Southern California (Los Angeles, CA) and the Sharp Laboratories of America (Camas, WA). From 2000, Dr. Li has also served as an adjunct professor at the Electrical Engineering Department, Tsinghua University (Beijing, China). His research interests cover audio/image/video/graphic compression, audio/video streaming, realtime audio/video conferencing, peer-to-peer content delivery, distributed storage, etc. Dr. Li has published 80+ referred conference and journal papers. He is currently an Area Editor for the Journal of Visual Communication and Image Representation and an Associate Editor for the Peer-to-Peer Networking and Applications. He has served as an Associate Editor for IEEE Trans. on Multimedia, and on numerous TPC committees for major conferences. He was the recipient of the 1998 Young Investigator Award from SPIE Visual Communication and Image Processing.   相似文献   

10.
We propose a unifying family of quadratic cost functions to be used in Peer-to-Peer ratings. We show that our approach is general since it captures many of the existing algorithms in the fields of visual layout, collaborative filtering and Peer-to-Peer rating, among them Koren spectral layout algorithm, Katz method, Spatial ranking, Personalized PageRank and Information Centrality. Besides of the theoretical interest in finding common basis of algorithms that where not linked before, we allow a single efficient implementation for computing those various rating methods. We introduce a distributed solver based on the Gaussian Belief Propagation algorithm which is able to efficiently and distributively compute a solution to any single cost function drawn from our family of quadratic cost functions. By implementing our algorithm once, and choosing the computed cost function dynamically on the run we allow a high flexibility in the selection of the rating method deployed in the Peer-to-Peer network. Using simulations over real social network topologies obtained from various sources, including the MSN Messenger social network, we demonstrate the applicability of our approach. We report simulation results using networks of millions of nodes.
Danny BicksonEmail:

Danny Bickson   is a Ph.D. candidate at the Hebrew University of Jerusalem. He received his M.Sc. and B.Sc. degree is 2003 and 1999 respectively at the Hebrew University of Jerusalem. His research interests include linear dynamical systems, message-passing algorithms applied in distributed settings and Peer-to-Peer networks. Dahlia Malkhi   is a Principal Researcher in the Microsoft Research Silicon Valley lab. She received her Ph.D., M.Sc. and B.Sc. degrees in 1994, 1988, 1985, respectively, from the Hebrew University of Jerusalem, Israel. During the years 1995–1999 she was a member of the Secure Systems Research Department at AT&T Labs-Research in Florham Park, New Jersey. From 1999 to 2007, she was a member of the faculty at the Institute of Computer Science, the Hebrew University of Jerusalem. Her research interests include all areas of distributed systems.   相似文献   

11.
Node sampling services provide peers in a peer-to-peer system with a source of randomly chosen addresses of other nodes. Ideally, samples should be independent and uniform. The restrictions of a distributed environment, however, introduce various dependancies between samples. We review gossip-based sampling protocols proposed in previous work, and identify sources of inaccuracy. These include replicating the items from which samples are drawn, and imprecise management of the process of refreshing items. Based on this analysis, we propose a new protocol, Eddy, which aims to minimize temporal and spatial dependancies between samples. We demonstrate, through extensive simulation experiments, that these changes lead to an improved sampling service. Eddy maintains a balanced distribution of items representing active system nodes, even in the face of realistic levels of message loss and node churn. As a result, it behaves more like a centralized random number generator than previous protocols. We demonstrate this by showing that using Eddy improves the accuracy of a simple algorithm that uses random samples to estimate the size of a peer-to-peer network.
Stephen A. JarvisEmail:

Elth Ogston   is a Post-doctoral Research Fellow the High Performance Systems Group at the University of Warwick. She obtained her Bachelors/Masters degree from the Massachusetts Institute of Technology in 1996 and subsequently joined HP Labs in Bristol. She completed her Ph.D. at the Vrije Universiteit Amsterdam in 2005. Stephen A. Jarvis   is an Associate Professor (Reader) in the Department of Computer Science at the University of Warwick. He is head of the High Performance Systems Group and also the Department’s Director of Research. Dr Jarvis has authored more than 125 refereed publications (including three books) on software and performance evaluation. While previously at the Oxford University Computing Laboratory, he worked on the development of performance tools with Oxford Parallel, Sychron Ltd and Microsoft Research in Cambridge. He has considerable experience in the field of peer-to-peer systems, with particular reference to overlay construction and performance optimization(including publications in ICDCS, INFOCOM, DSN and MASCOTS). His recent papers on this topic have received best paper awards, and he has published several IEEE Transactions Parallel and Distributed Systems articles in this area. He is also guest editor of a special issue of the International Journal of Parallel, Emergent and Distributed Systems dedicated to the performance analysis of P2P systems. Dr Jarvis has been a member of more than thirty international programme committees for high-performance and distributed computing. He is an external advisor for the Netherlands Organization for Scientific Research; co-organiser for one of the UK’s High End Scientific Computing Training Centres; Manager of the Midlands e-Science Technical Forum on Grid Technologies, and elected member of the EPSRC Review College.   相似文献   

12.
The problem of minimizing communication in a distributed networked system is considered in a discrete-event formalism where the system is modeled as a finite-state automaton. The system consists of a central station and a set of N local agents, each observing a set of local events. The central station needs to know exactly the state of the system, whereas local agents need to disambiguate certain pre-specified pairs of states for purposes of control or diagnosis. This requirement is achieved by communication, which occurs only between the central station and the local agents but not among the local agents. A communication policy is defined as a set of event occurrences to be communicated between the central station and the local agents. A communication policy is said to be minimal if any removal of communication of event occurrences will affect the correctness of the solution. Under an assumption on the absence of cycles (other than self-loops) in the system model, this paper presents an algorithm that computes a minimal communication policy in polynomial time in all parameters of the system. These results improve upon previous algorithms for solving minimum communication problems.
Feng LinEmail:

Weilin Wang   received M.S. and Ph.D. degrees in Electrical Engineering: Systems from the University of Michigan, Ann Arbor, in 2003 and 2007, respectively. He received a M.S.E. in Industrial Engineering, also from the University of Michigan, Ann Arbor, in 2006. He is currently a postdoctoral research fellow in the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. Prior to enrolling at the University of Michigan, Ann Arbor, he worked for the Zhejiang Department of Transportation, Hangzhou, China. His research interests are in optimization algorithms, discrete event systems, networked control systems, coverage and mobility for wireless sensor networks, and energy efficient wireless networking. Stéphane Lafortune   received the B. Eng degree from Ecole Polytechnique de Montréal in 1980, the M. Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). At the University of Michigan, he received the EECS Department Research Excellence Award in 1994–1995, the EECS Department Teaching Excellence Award in 1997–1998, and the EECS Outstanding Achievement Award in 2003–2004. Dr. Lafortune is a member of the editorial boards of the Journal of Discrete Event Dynamic Systems: Theory and Applications and of the International Journal of Control. His research interests are in discrete event systems modeling, diagnosis, control, and optimization. He is co-developer of the software packages DESUMA and UMDES. He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems—Second Edition (Springer, 2007). Recent publications and software tools are available at the Web site . Feng Lin   received his B.Eng. degree in electrical engineering from Shanghai Jiao-Tong University, Shanghai, China, in 1982, and his M.A.Sc. and Ph.D. degrees in electrical engineering from the University of Toronto, Toronto, Canada, in 1984 and 1988, respectively. From 1987 to 1988, he was a postdoctoral fellow at Harvard University, Cambridge, MA. Since 1988, he has been with the Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, where he is currently a professor. His research interests include discrete-event systems, hybrid systems, robust control, and image processing. He was a consultant for GM, Ford, Hitachi and other auto companies. Dr. Lin co-authored a paper with S. L. Chung and S. Lafortune that received a George Axelby outstanding paper award from IEEE Control Systems Society. He is also a recipient of a research initiation award from the National Science Foundation, an outstanding teaching award from Wayne State University, a faculty research award from ANR Pipeline Company, and a research award from Ford. He was an associate editor of IEEE Transactions on Automatic Control.   相似文献   

13.
Theory of relative defect proneness   总被引:1,自引:1,他引:0  
In this study, we investigated the functional form of the size-defect relationship for software modules through replicated studies conducted on ten open-source products. We consistently observed a power-law relationship where defect proneness increases at a slower rate compared to size. Therefore, smaller modules are proportionally more defect prone. We externally validated the application of our results for two commercial systems. Given limited and fixed resources for code inspections, there would be an impressive improvement in the cost-effectiveness, as much as 341% in one of the systems, if a smallest-first strategy were preferred over a largest-first one. The consistent results obtained in this study led us to state a theory of relative defect proneness (RDP): In large-scale software systems, smaller modules will be proportionally more defect-prone compared to larger ones. We suggest that practitioners consider our results and give higher priority to smaller modules in their focused quality assurance efforts.
Divya MathewEmail:

A. Güneş Koru   received a B.S. degree in Computer Engineering from Ege University, İzmir, Turkey in 1996, an M.S. degree in Computer Engineering from Dokuz Eylül University, İzmir, Turkey in 1998, an M.S. degree in Software Engineering from Southern Methodist University (SMU), Dallas, TX in 2002, and a Ph.D. degree in Computer Science from SMU in 2004. He is an assistant professor in the Department of Information Systems at University of Maryland, Baltimore County (UMBC). His research interests include software quality, measurement, maintenance, and evolution, open source software, bioinformatics, and healthcare informatics. Khaled El Emam   is an Associate Professor at the University of Ottawa, Faculty of Medicine and the School of Information Technology and Engineering. He is a Canada Research Chair in Electronic Health Information at the University of Ottawa. Previously Khaled was a Senior Research Officer at the National Research Council of Canada, and prior to that he was head of the Quantitative Methods Group at the Fraunhofer Institute in Kaiserslautern, Germany. In 2003 and 2004, he was ranked as the top systems and software engineering scholar worldwide by the Journal of Systems and Software based on his research on measurement and quality evaluation and improvement, and ranked second in 2002 and 2005. He holds a Ph.D. from the Department of Electrical and Electronics, King’s College, at the University of London (UK). His labs web site is: . Dongsong Zhang   is an Associate Professor in the Department of Information Systems at University of Maryland, Baltimore County. He received his Ph.D. in Management Information Systems from the University of Arizona. His current research interests include context-aware mobile computing, computer-mediated collaboration and communication, knowledge management, and open source software. Dr. Zhang’s work has been published or will appear in journals such as Communications of the ACM (CACM), Journal of Management Information Systems (JMIS), IEEE Transactions on Knowledge and Data Engineering (TKDE), IEEE Transactions on Multimedia, IEEE Transactions on Systems, Man, and Cybernetics, IEEE Transactions on Professional Communication, among others. He has received research grants and awards from NIH, Google Inc., and Chinese Academy of Sciences. He also serves as senior editor or editorial board member of a number of journals. Hongfang Liu   is currently an Assistant Professor in Department of Biostatistics, Bioinformatics, and Biomathematics (DBBB) of Georgetown University. She has been working in the field of Biomedical Informatics for more than 10 years. Her expertise in clinical informatics includes clinical information system, controlled medical vocabulary, and medical language processing. Her expertise in bioinformatics includes microarray data analysis, biomedical entity nomenclature, molecular biology database curation, ontology, and biological text mining. She received a B.S. degree in Applied Mathematics and Statistics from University of Science and Technology of China in 1994, a M.S. degree in Computer Science from Fordham University in 1998, a PhD degree in computer science at the Graduate School of City University of New York in 2002. Divya Mathew   received the BTech degree in computer science and engineering from Cochin University of Science and Technology in 2005 and the MS degree in information systems from the University of Maryland, Baltimore County in 2008. Her research interests include software engineering and privacy preserving data mining techniques.   相似文献   

14.
Despite many improvements on original unstructured P2P networks, these systems still suffer from several problems, the most important of which are, (a) lack of guarantees on the integrity of the network topology in the face of churns, (b) excessive traffic cost and (c) poor quality of search results. This paper introduces an end-to-end scalable unstructured P2P networking solution called SUPNET to address many of these issues. SUPNET is based on our pragmatic, design oriented approach to engineering complex networks. Rather than modeling dynamical behavior in already-existing networks, we actively design and implement local stochastic dynamics so that an engineered global system, with predictable structures emerges. The resulting protocol, SUPNET, consists of two sub-protocols for network management and content search. The network management sub-protocol is scalable and highly robust and is capable of utilizing the heterogeneous distribution of network resources. Its high stability is the result of implementation of a novel distributed feedback mechanism. The search sub-protocol is capable of locating every item, even if a single copy of that item exists in the network, while producing a traffic that scales provably sub-linear with the network size. It also contains mechanisms for very efficient location of popular items as well as distributed parameter tuning algorithms. These, along with inherently self-organized and de-centralized operation, relative ease of implementation and solid analytical foundation, make SUPNET a compelling solution for unstructured P2P networking.
Vwani P. RoychowdhuryEmail:

Nima Sarshar   received his B.Sc. from Sharif University of Technology, Iran, his Masters from University of California, Los Angeles, USA and his Ph.D. from McMaster University, Canada, all in electrical engineering. Currently, he is an Assistant Professor in Faculty of Engineering, University of Regina, SK, Canada. His research interests include large scale distributed processing, P2P computing and multimedia networking. He has won the best paper award at IEEE P2P ’04 for his paper, “Percolation Search Algorithm in Power-Law Networks: Making Unstructured P2P Networks Scalable” and at VCIP ’08 for his paper “Rate-Distortion Optimized Multimedia Communication in Networks”. Vwani P. Roychowdhury   received the Ph.D. degree in Electrical Engineering from Stanford University. He is a professor of Electrical Engineering at the University of California, Los Angeles. His research focuses on computation models, including parallel and distributed processing systems, quantum computation and information processing, and circuits and computing paradigms for nanoelectronics and molecular electronics.   相似文献   

15.
Advanced collaboration environments are extensively utilized for distance learning, e-science, and other distributed global collaboration events. In such environments, high-quality and seamless media services play an important role in improving the quality of user experience to participants. In this paper, to support high-quality media-based services, we design open media service architecture for advanced collaboration environments, by combining the open interface for state-of-the-art media tools, the performance monitoring tools for devices and networks, and application-level adaptation schemes for media streaming. By implementing the proposed architecture on top of an open-source Access Grid (AG) collaboration toolkit, we verify that high-quality collaboration among several collaboration sites can be effectively realized over a multicast-enabled network testbed with improved media quality experience.
JongWon Kim (Corresponding author)Email:

Sang Woo Han   received the B.S. degree in computer science from Chung-Ang University, Seoul, Korea and the M.S. degree from the Department of Information and Communications at Gwangju Institute of Science and Technology (GIST), Gwangju, Korea in 2003 and 2005, respectively. He is pursuing a Ph.D. degree in the School of Information and Mechatronics at GIST. His research interests include advanced collaboration environment with a current focus on multimedia QoS provision and multi-agent negotiation. Ju-Won Park   received his B.S. degree in information and telecommunication engineering from Hankuk Aviation University in 2002 and his M.S. degree in Information and Communications at Gwangju Institute of Science and Technology (GIST) in 2004. He is pursuing a Ph.D. degree in the School of Information and Mechatronics at GIST. His main research activities concern end-to-end monitoring for multi-party real-time media delivery. JongWon Kim   received the B.S., M.S. and Ph.D. degrees from Seoul National University, Seoul, Korea, in 1987, 1989 and 1994, respectively, all in control and instrumentation engineering. In 1994-1999, he was with the Department of Electronics Engineering at the KongJu National University, KongJu, Korea, as an Assistant Professor. From 1997 to 2001, he was visiting the Signal and Image Processing Institute (SIPI) of Electrical Engineering - Systems Department at the University of Southern California, Los Angeles, CA. USA, where he has served as a Research Assistant Professor since Dec. 1998. From September 2001, he has joined as an Associate Prof. at the Department of Information & Communications, Gwangju Institute of Science and Technology (GIST, formerly known as K-JIST), Gwangju, Korea, where he is now serving as a Professor. He is focusing on networked media systems and protocols including multimedia signal processing and communications. Dr. Kim is a senior member of IEEE, a member of ACM, SPIE, KICS, IEEK, KIISE, and KIPS.   相似文献   

16.
We present a comprehensive unified modeling language (UML) statechart diagram analysis framework. This framework allows one to progressively perform different analysis operations to analyze UML statechart diagrams at different levels of model complexity. The analysis operations supported by the framework are based on analyzing Petri net models converted from UML statechart diagrams using a previously proposed transformation approach. After introducing the general framework, the paper emphasizes two simulation-based analysis operations from the framework: direct MSC inspection, which provides a visual representation of system behavior described by statechart diagrams; and a pattern-based trace query technique, which can be used to define and query system properties. Two case-study examples are presented with different emphasis. The gas station example is a simple multi-object system used to demonstrate both the visual and query-based analysis operations. The early warning system example uses only one object, but features composite states and includes analysis specifically aimed at one composite state feature, history states.
Sol M. ShatzEmail:

Jiexin Lian   is a Ph.D. candidate in computer science at the University of Illinois at Chicago. His research interests include software engineering and Petri net theory and applications. He received his B.S. in computer science from Tongji University, China. Zhaoxia Hu   received her B.S. degree in Physics from Beijing University, Beijing, China in 1990. She received the M.S. and Ph.D. degrees, in computer science, from University of Illinois at Chicago, Chicago, IL, in 2001 and 2005, respectively. She currently works for an investment research company (Morningstar, Inc.) as an application developer. Sol M. Shatz   received the B.S. degree in computer science from Washington University, St. Louis, Missouri, and the M.S. and Ph.D. degrees, also in computer science, from Northwestern University, Evanston, IL, in 1981 and 1983, respectively. He is currently a Professor of Computer Science and Associate Dean for Research and Graduate Studies in the College of Engineering at the University of Illinois at Chicago. He also serves as co-director of the Concurrent Software Systems Laboratory. His research is in the field of software engineering, with particular interest in formal methods for specification and analysis of concurrent and distributed software. He has served on the program and organizing committees of many conferences, including co-organizer of the Workshop on Software Engineering and Petri Nets held in Denmark, June 2000; program co-chair for the International Conference on Distributed Computing Systems (ICDCS), 2003; and General Chair for ICDCS 2007. He has given invited talks in the US, Japan, and China, and presented tutorials (both live and video) for the IEEE Computer Society. Dr. Shatz is a member of the Editorial Board for various technical journals, having served on the Editorial Board for IEEE Transactions on Software Engineering from 2001 to 2005. His research as been supported by grants from NSF and ARO, among other agencies and companies. He has received various teaching awards from the University of Illinois at Chicago as well as the College of Engineering’s Faculty Research Award in 2003.   相似文献   

17.
Processing Optimal Sequenced Route Queries Using Voronoi Diagrams   总被引:4,自引:1,他引:3  
The Optimal Sequenced Route (OSR) query strives to find a route of minimum length starting from a given source location and passing through a number of typed locations in a specific sequence imposed on the types of the locations. In this paper, we propose a pre-computation approach to OSR query in both vector and metric spaces. We exploit the geometric properties of the solution space and theoretically prove its relation to additively weighted Voronoi diagrams. Our approach recursively accesses these diagrams to incrementally build the OSR. Introducing the analogous diagrams for the space of road networks, we show that our approach is also efficiently applicable to this metric space. Our experimental results verify that our pre-computation approach outperforms the previous index-based approaches in terms of query response time. This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), IIS-0238560 (PECASE), IIS-0324955 (ITR), IIS-0534761, and unrestricted cash gifts from Google and Microsoft. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.
Mehdi Sharifzadeh (Corresponding author)Email: URL: http://infolab.usc.edu
Cyrus ShahabiEmail:

Mehdi Sharifzadeh   received his B.S. and M.S. degrees in Computer Engineering from Sharif University of Technology in Tehran, Iran, in 1995, and 1998, respectively. He received his Ph.D. degree in Computer Science from the University of Southern California in May 2007. His research interests include spatial and spatio-temporal databases, data stream processing, and sensor networks. Cyrus Shahabi   is currently an Associate Professor and the Director of the Information Laboratory (InfoLAB) at the Computer Science Department and also a Research Area Director at the NSF’s Integrated Media Systems Center at the University of Southern California. He received his B.S. in Computer Engineering from Sharif University of Technology in 1989 and then his M.S. and Ph.D. degrees in Computer Science from the University of Southern California in May 1993 and August 1996, respectively. He has two books and more than hundred articles, book chapters, and conference papers in the areas of databases, GIS and multimedia. Dr. Shahabi’s current research interests include Geospatial and Multidimensional Data Analysis, Peer-to-Peer Systems and Streaming Architectures. He is currently an associate editor of the IEEE Transactions on Parallel and Distributed Systems and on the editorial board of ACM Computers in Entertainment magazine. He is also a member of the steering committees of IEEE NetDB and general co-chair of ACM GIS 2007. He serves on many conference program committees such as ACM SIGKDD 2006-08, IEEE ICDE 2006 and 08, SSTD 2005-08 and ACM SIGMOD 2004. Dr. Shahabi is the recipient of the 2002 NSF CAREER Award and 2003 Presidential Early Career Awards for Scientists and Engineers. In 2001, he also received an award from the Okawa Foundations.   相似文献   

18.
Traditionally, direct marketing companies have relied on pre-testing to select the best offers to send to their audience. Companies systematically dispatch the offers under consideration to a limited sample of potential buyers, rank them with respect to their performance and, based on this ranking, decide which offers to send to the wider population. Though this pre-testing process is simple and widely used, recently the industry has been under increased pressure to further optimize learning, in particular when facing severe time and learning space constraints. The main contribution of the present work is to demonstrate that direct marketing firms can exploit the information on visual content to optimize the learning phase. This paper proposes a two-phase learning strategy based on a cascade of regression methods that takes advantage of the visual and text features to improve and accelerate the learning process. Experiments in the domain of a commercial Multimedia Messaging Service (MMS) show the effectiveness of the proposed methods and a significant improvement over traditional learning techniques. The proposed approach can be used in any multimedia direct marketing domain in which offers comprise both a visual and text component.
Giuseppe TribulatoEmail:

Sebastiano Battiato   was born in Catania, Italy, in 1972. He received the degree in Computer Science (summa cum laude) in 1995 and his Ph.D in Computer Science and Applied Mathematics in 1999. From 1999 to 2003 he has lead the “Imaging” team c/o STMicroelectronics in Catania. Since 2004 he works as a Researcher at Department of Mathematics and Computer Science of the University of Catania. His research interests include image enhancement and processing, image coding and camera imaging technology. He published more than 90 papers in international journals, conference proceedings and book chapters. He is co-inventor of about 15 international patents. He is reviewer for several international journals and he has been regularly a member of numerous international conference committees. He has participated in many international and national research projects. He is an Associate Editor of the SPIE Journal of Electronic Imaging (Specialty: digital photography and image compression). He is director of ICVSS (International Computer Vision Summer School). He is a Senior Member of the IEEE. Giovanni Maria Farinella   is currently contract researcher at Dipartimento di Matematica e Informatica, University of Catania, Italy (IPLAB research group). He is also associate member of the Computer Vision and Robotics Research Group at University of Cambridge since 2006. His research interests lie in the fields of computer vision, pattern recognition and machine learning. In 2004 he received his degree in Computer Science (egregia cum laude) from University of Catania. He was awarded a Ph.D. (Computer Vision) from the University of Catania in 2008. He has co-authored several papers in international journals and conferences proceedings. He also serves as reviewer numerous international journals and conferences. He is currently the co-director of the International Summer School on Computer Vision (ICVSS). Giovanni Giuffrida   is an assistant professor at University of Catania, Italy. He received a degree in Computer Science from the University of Pisa, Italy in 1988 (summa cum laude), a Master of Science in Computer Science from the University of Houston, Texas, in 1992, and a Ph.D. in Computer Science, from the University of California in Los Angeles (UCLA) in 2001. He has an extensive experience in both the industrial and academic world. He served as CTO and CEO in the industry and served as consultant for various organizations. His research interest is on optimizing content delivery on new media such as Internet, mobile phones, and digital tv. He published several papers on data mining and its applications. He is a member of ACM and IEEE. Catarina Sismeiro   is a senior lecturer at Imperial College Business School, Imperial College London. She received her Ph.D. in Marketing from the University of California, Los Angeles, and her Licenciatura in Management from the University of Porto, Portugal. Before joining Imperial College Catarina had been and assistant professor at Marshall School of Business, University of Southern California. Her primary research interests include studying pharmaceutical markets, modeling consumer behavior in interactive environments, and modeling spatial dependencies. Other areas of interest are decision theory, econometric methods, and the use of image and text features to predict the effectiveness of marketing communications tools. Catarina’s work has appeared in innumerous marketing and management science conferences. Her research has also been published in the Journal of Marketing Research, Management Science, Marketing Letters, Journal of Interactive Marketing, and International Journal of Research in Marketing. She received the 2003 Paul Green Award and was the finalist of the 2007 and 2008 O’Dell Awards. Catarina was also a 2007 Marketing Science Institute Young Scholar, and she received the D. Antonia Adelaide Ferreira award and the ADMES/MARKTEST award for scientific excellence. Catarina is currently on the editorial boards of the Marketing Science journal and the International Journal of Research in Marketing. Giuseppe Tribulato   was born in Messina, Italy, in 1979. He received the degree in Computer Science (summa cum laude) in 2004 and his Ph.D in Computer Science in 2008. From 2005 he has lead the research team at Neodata Group. His research interests include data mining techniques, recommendation systems and customer targeting.   相似文献   

19.
Adaptive sensing involves actively managing sensor resources to achieve a sensing task, such as object detection, classification, and tracking, and represents a promising direction for new applications of discrete event system methods. We describe an approach to adaptive sensing based on approximately solving a partially observable Markov decision process (POMDP) formulation of the problem. Such approximations are necessary because of the very large state space involved in practical adaptive sensing problems, precluding exact computation of optimal solutions. We review the theory of POMDPs and show how the theory applies to adaptive sensing problems. We then describe a variety of approximation methods, with examples to illustrate their application in adaptive sensing. The examples also demonstrate the gains that are possible from nonmyopic methods relative to myopic methods, and highlight some insights into the dependence of such gains on the sensing resources and environment.
Alfred O. Hero IIIEmail:

Edwin K. P. Chong   received the BE(Hons) degree with First Class Honors from the University of Adelaide, South Australia, in 1987; and the MA and PhD degrees in 1989 and 1991, respectively, both from Princeton University, where he held an IBM Fellowship. He joined the School of Electrical and Computer Engineering at Purdue University in 1991, where he was named a University Faculty Scholar in 1999, and was promoted to Professor in 2001. Since August 2001, he has been a Professor of Electrical and Computer Engineering and a Professor of Mathematics at Colorado State University. His research interests span the areas of communication and sensor networks, stochastic modeling and control, and optimization methods. He coauthored the recent best-selling book, An Introduction to Optimization, 3rd Edition, Wiley-Interscience, 2008. He is currently on the editorial board of the IEEE Transactions on Automatic Control, Computer Networks, Journal of Control Science and Engineering, and IEEE Expert Now. He is a Fellow of the IEEE, and served as an IEEE Control Systems Society Distinguished Lecturer. He received the NSF CAREER Award in 1995 and the ASEE Frederick Emmons Terman Award in 1998. He was a co-recipient of the 2004 Best Paper Award for a paper in the journal Computer Networks. He has served as Principal Investigator for numerous funded projects from NSF, DARPA, and other funding agencies. Christopher M. Kreucher   received the BS, MS, and PhD degrees in Electrical Engineering from the University of Michigan in 1997, 1998, and 2005, respectively. He is currently a Senior Systems Engineer at Integrity Applications Incorporated in Ann Arbor, Michigan. His current research interests include nonlinear filtering (specifically particle filtering), Bayesian methods of fusion and multitarget tracking, self localization, information theoretic sensor management, and distributed swarm management. Alfred O. Hero III   received the BS (summa cum laude) from Boston University (1980) and the PhD from Princeton University (1984), both in Electrical Engineering. Since 1984 he has been with the University of Michigan, Ann Arbor, where he is a Professor in the Department of Electrical Engineering and Computer Science and, by courtesy, in the Department of Biomedical Engineering and the Department of Statistics. He has held visiting positions at Massachusetts Institute of Technology (2006), Boston University, I3S University of Nice, Sophia-Antipolis, France (2001), Ecole Normale Superieure de Lyon (1999), Ecole Nationale Superieure des Telecommunications, Paris (1999), Scientific Research Labs of the Ford Motor Company, Dearborn, Michigan (1993), Ecole Nationale Superieure des Techniques Avancees (ENSTA), Ecole Superieure d’Electricite, Paris (1990), and M.I.T. Lincoln Laboratory (1987–1989). His recent research interests have been in areas including: inference for sensor networks, adaptive sensing, bioinformatics, inverse problems. and statistical signal and image processing. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a member of Tau Beta Pi, the American Statistical Association (ASA), the Society for Industrial and Applied Mathematics (SIAM), and the US National Commission (Commission C) of the International Union of Radio Science (URSI). He has received a IEEE Signal Processing Society Meritorious Service Award (1998), IEEE Signal Processing Society Best Paper Award (1998), a IEEE Third Millenium Medal and a 2002 IEEE Signal Processing Society Distinguished Lecturership. He was President of the IEEE Signal Processing Society (2006–2007) and during his term served on the TAB Periodicals Committee (2006). He was a member of the IEEE TAB Society Review Committee (2008) and is Director-elect of IEEE for Division IX (2009).   相似文献   

20.
The usefulness of measures for the analysis and design of object oriented (OO) software is increasingly being recognized in the field of software engineering research. In particular, recognition of the need for early indicators of external quality attributes is increasing. We investigate through experimentation whether a collection of UML class diagram measures could be good predictors of two main subcharacteristics of the maintainability of class diagrams: understandability and modifiability. Results obtained from a controlled experiment and a replica support the idea that useful prediction models for class diagrams understandability and modifiability can be built on the basis of early measures, in particular, measures that capture structural complexity through associations and generalizations. Moreover, these measures seem to be correlated with the subjective perception of the subjects about the complexity of the diagrams. This fact shows, to some extent, that the objective measures capture the same aspects as the subjective ones. However, despite our encouraging findings, further empirical studies, especially using data taken from real projects performed in industrial settings, are needed. Such further study will yield a comprehensive body of knowledge and experience about building prediction models for understandability and modifiability.
Mario PiattiniEmail:

Marcela Genero   is an Associate Professor in the Department of Information Systems and Technologies at the University of Castilla-La Mancha, Ciudad Real, Spain. She received her MSc degree in Computer Science from the University of South, Argentine in 1989, and her PhD at the University of Castilla-La Mancha, Ciudad Real, Spain in 2002. Her research interests include empirical software engineering, software metrics, conceptual data models quality, database quality, quality in product lines, quality in MDD, etc. She has published in prestigious journals (Journal of Software Maintenance and Evolution: Research and Practice, L’Objet, Data and Knowledge Engineering, Journal of Object Technology, Journal of Research and Practice in Information Technology), and conferences (CAISE, E/R, MODELS/UML, ISESE, OOIS, SEKE, etc). She edited the books of Mario Piattini and Coral Calero titled “Data and Information Quality” (Kluwer, 2001), and “Metrics for Software Conceptual Models” (Imperial College, 2005). She is a member of ISERN. M. Esperanza Manso   is an Associate Professor in the Department of Computer Language and Systems at the University of Valladolid, Valladolid, Spain. She received her MSc degree in Mathematics from the University of Valladolid. Currently, she is working towards her PhD. Her main research interests are software maintenance, reengineering and reuse experimentation. She is an author of several papers in conferences (OOIS, CAISE, METRICS, ISESE, etc.) and book chapters. Corrado Aaron Visaggio   is an Assistant Professor of Database and Software Testing at the University of Sannio, Italy. He obtained his PhD in Software Engineering at the University of Sannio. He works as a researcher at the Research Centre on Software Technology, at Benvento, Italy. His research interests include empirical software engineering, software security, software process models. He serves on the Editorial Board on the e-Informatica Journal. Gerardo Canfora   is a Full Professor of Computer Science at the Faculty of Engineering and the Director of the Research Centre on Software Technology (RCOST) at the University of Sannio in Benevento, Italy. He serves on the program committees of a number of international conferences. He was a program co-chair of the 1997 International Workshop on Program Comprehension; the 2001 International Conference on Software Maintenance; the 2003 European Conference on Software Maintenance and Reengineering; the 2005 International Workshop on Principles of Software Evolution: He was the General chair of the 2003 European Conference on Software Maintenance and Reengineering and 2006 Working Conference on Reverse Engineering. Currently, he is a program co-chair of the 2007 International Conference on Software Maintenance. His research interests include software maintenance and reverse engineering, service oriented software engineering, and experimental software engineering. He was an associate editor of IEEE Transactions on Software Engineering and he currently serves on the Editorial Board of the Journal of Software Maintenance and Evolution. He is a member of the IEEE Computer Society. Mario Piattini   is MSc and PhD in Computer Science by the Technical University of Madrid. Certified Information System Auditor by ISACA (Information System Audit and Control Association). Full Professor in the Department of Information Systems and Technologies at the University of Castilla-La Mancha, in Ciudad Real, Spain. Author of several books and papers on databases, software engineering and information systems. He leads the ALARCOS research group at the University of Castilla-La Mancha.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号