共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
一种加权支持向量机分类算法 总被引:17,自引:1,他引:17
提出了一种加权C—SVM分类算法,并从理论上分析了算法的性能。该算法通过引入类权重因子和样本权重因子实现了类加权和样本加权两种功能。实验结果表明,该算法可以有效地解决由类大小不均衡引发的分类错误问题以及重要样本的错分问题。 相似文献
3.
4.
5.
6.
支持向量机(support vector machine,SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,并已广泛应用于模式识别与回归分析等领域。本文重点阐述了一些典型的支持向量机多分类算法及支持向量机多标注算法。最后指出了进一步研究和亟待解决的一些问题。 相似文献
7.
为了快速地进行分类,根据几何思想来训练支持向量机,提出了一种快速而简单的支持向量机训练算法——几何快速算法。由于支持向量机的最优分类面只由支持向量决定,因此只要找出两类样本中所有支持向量,那么最优分类面就可以完全确定。该新的算法根据两类样本的几何分布,先从两类样本的最近点开始;然后通过不断地寻找违反KKT条件的样本点来找出支持向量;最后确定最优分类面。为了验证新算法的有效性,分别利用两个公共数据库,对新算法与SMO算法及DIRECTSVM算法进行了实验对比,实验结果显示,新算法的分类精度虽与其他两个方法相当,但新算法的运算速度明显比其他两个算法快。 相似文献
8.
支持向量机分类算法研究 总被引:4,自引:0,他引:4
支持向量机在处理两类分类问题时,当两类样本混杂严重时会降低分类精度。在NN-SVM分类算法的基础上,通过计算样本点与其最近邻点类别的异同以及该点与其k个同类近邻点在核空间的平均距离修剪混淆点,进而提出了一种改进的NN-SVM算法——KCNN-SVM。实验数据表明,KCNN-SVM算法与SVM以及NN-SVM相比,有着更高的分类精度和更快的训练、分类时间。 相似文献
9.
一种新的软间隔支持向量机分类算法 总被引:3,自引:1,他引:3
软间隔支持向量机(SVM)分类算法是目前最具有代表性的模式分类算法之一,它在应用中的一个主要困难是确定控制参数C.提出一种新的软间隔SVM分类算法,通过松弛变量改变约束条件,允许数据点进入分离区域但不越过分类超平面,从而避免了参数C的确定问题.计算机实验和故障诊断实例表明,基于新算法的SVM分类器有较高的分类准确性和较好的泛化性能,能够实际应用于模式分类. 相似文献
10.
一种新的模糊支持向量机多分类算法* 总被引:5,自引:3,他引:2
在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vector machines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。 相似文献
11.
支持向量机是基于小样本统计理论的一种新的机器学习方法,主要解决两分类问题。目前已成为机器学习领域的研究热点,但其应用方面的研究刚刚开始,在文本分类,图像分类、生物序列分析等方面得到成功应用。文章根据空间数据分类数据海量特点将SVM分类算法应用到炮阵地地形分析中,使得识别率大大提高。 相似文献
12.
支持向量机(Support Vector Machines,简称SVM)根据有限的样本信息在对文本分类的精度和学习能力之间,相比其他的文本分类算法寻求了最佳折中,从而获得了较好的推广能力。而SVM是从线性可分情况下的最优分类面发展而来的,因此对于线性可分文本具有更好的分类效果。给出了一种效率较高的线性可分文本的SVM算法,它在训练的时间复杂度上具有明显的改进,从而可以提高训练效率。结果表明:改进后的SVM算法相比以前的算法大大提高了运行效率。 相似文献
13.
In this Letter an efficient recursive update algorithm for least squares support vector machines (LSSVMs) is developed. Using the previous solution and some matrix equations, the algorithm completely avoids training the LSSVM all over again whenever new training sample is available. The gain in speed using the recursive update algorithm is illustrated on four data sets from UCI repository: the Statlog Australian credit, the Pima Indians diabetes, the Wisconsin breast cancer, and the adult income data sets. 相似文献
14.
模糊支持向量分类机 总被引:6,自引:0,他引:6
研究了当训练点的输出为模糊数时支持向量分类机的构建问题。对于线性模糊分类问题,首先将其转化为模糊系数规划。利用模糊系数规划的λ-最优规划,求解模糊系数规划得到模糊最优解(模糊集合)以及模糊最优分类函数集(取值为最优分类函数而隶属度为λ(0≤λ≤1)的模糊集合),从而构造线性模糊支持向量分类机。对于非线性模糊分类问题,引入核函数,类似干线性模糊分类问题得到非线性模糊支持向量分类机。最后构造显示模糊支持向量分类机特点的模糊支持向量集(取值为模糊训练点,隶属度为λ(0≤λ≤1)的模糊集合)。模糊支持向量分类机较好地解决了支持向量机中含有模糊信息的分类问题。 相似文献
15.
一种适合于增量学习的支持向量机的快速循环算法 总被引:5,自引:0,他引:5
当样本数量大到计算机内存中放不下时,常规支持向量机方法就失去了学习能力,为了解决这一问题,提高支持向量机的训练速度,文章分析了支持向量机分类的本质特征,根据支持向量机分类仅与支持向量有关的特点,提出了一种适合于支持向量机增量学习的快速循环算法(PFI-SVM),提高了支持向量机的训练速度和大样本学习的能力,而支持向量机的分类能力不受任何影响,取得了较好的效果。 相似文献
16.
支持向量机训练和实现算法综述 总被引:26,自引:2,他引:26
支持向量机是在统计学习理论基础上发展起来的一种新的机器学习方法,支持向量机已成为目前研究的热点,并在模式识别、回归分析、函数估计等领域有了广泛的应用。该文在介绍了支持向量机的目前研究、应用状况和新进展的基础上,对支持向量机训练和实现算法进行了综述,最后指出了进一步研究和应用亟待解决的一些问题。 相似文献
17.
基于遗传算法和支持向量机的肿瘤分子分类 总被引:1,自引:0,他引:1
提出了一种基于遗传算法(GA)和支持向量机(SVM)的用于肿瘤分子分类和特征基因选择的新方法。该方法针对基因表达数据样本少维数高的特点,先根据基因的散乱度滤掉大量分类无关基因,而后使用相关性分析去除分类冗余基因,得到一个候选基因子集,用遗传算法搜索候选特征基因空间,发现在支持向量机分类器上具有好的分类性能的且含基因个数较少的特征子集。把这种GA/SVM方法应用到结肠癌和急性白血病基因表达谱,能选出多个取得较高分类精度的较小基因子集,实验结果表明了该方法的有效性。 相似文献
18.
一种新颖隶属度函数的模糊支持向量机 总被引:1,自引:0,他引:1
传统的支持向量机(SVM)训练含有外部点或噪音数据时,容易产生过拟合(over-fitting)。通过模糊隶属度函数来降低外部点或被污染数据的选择。本文提出了一种新的核隶属度函数,这种新的隶属度函数不仅依赖于每个样本点到类型中心的距离,还依赖于该样本点最邻近的K个其他样本点的距离。实验结果表明了具有该隶属度函数的模糊支持向量机的有效性。 相似文献
19.
传统支持向量机的时间空间复杂度和样本个数有关,样本个数大时,将产生时间空间上的巨大耗费。文章通过对一类问题最小包围球研究分析的基础上提出了一种简化算法,该算法对每一类别样本单独构造一个近似最小超球.不仅降低了二次规划问题的复杂度,而且易于扩充。仿真实验表明,该卓法在不降低识别率的情况下,减少了支持向量的个数,降低了算法的复杂度。 相似文献