首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 375 毫秒

1.  支持向量机学习算法的研究现状与展望  
   崔和  龙玉峰《信息与电子工程》,2008年第6卷第5期
   回顾了支持向量机理论的发展历程,介绍了支持向量机的标准训练算法及其分解算法、变形算法、几何算法以及多类分类算法,重点描述了最小二乘支持向量机算法,总结了支持向量机理论及其应用的现状,对支持向量机的未来发展方向进行了展望。    

2.  支持向量机(SVM)的研究进展  被引次数:17
   李晓宇  张新峰  沈兰荪《测控技术》,2006年第25卷第5期
   介绍了基于分解思想的支持向量机的训练算法,主要有两大类:块算法和固定工作样本集算法及其对应的快速算法SVM-light、SMO、BSVM和LIBSVM;介绍了支持向量机的变形算法、多类分类算法及模型选择问题;并且对近年来支持向量机在实际中的应用做了简要介绍,最后讨论了支持向量机亟待解决的问题并对其发展进行了展望.    

3.  基于类半径的多类分类SVM算法  
   张涛  刘长旺《华北水利水电学院学报》,2011年第32卷第3期
   分析了现有多类分类支持向量机算法的不足,在此基础上提出了基于类半径的多类分类支持向量机算法.这种算法在训练前首先对训练集进行分析,然后用one-class SVM进行分类.试验结果表明,该算法分类精度较高,训练时间短.    

4.  多分类孪生支持向量机研究进展  
   丁世飞  张健  张谢锴  安悦瑄《软件学报》,2018年第29卷第1期
   孪生支持向量机因其简单的模型、快速的训练速度和优秀的性能而受到广泛关注.该算法最初是为解决二分类问题而提出的,不能直接用于解决现实生活中普遍存在的多分类问题.近来,学者们致力于将二分类孪生支持向量机扩展为多分类方法并提出了多种多分类孪生支持向量机.多分类孪生支持向量机的研究已经取得了一定的进展.本文主要工作是回顾多分类孪生支持向量机的发展,对多分类孪生支持向量机进行合理归类,分析各个类型的多分类孪生支持向量机的理论和几何意义.本文以多分类孪生支持向量机的子分类器组织结构为依据,将多分类孪生支持向量机分为:基于“一对多”策略的多分类孪生支持向量机、基于“一对一”策略的多分类孪生支持向量机、基于“一对一对余”策略的多分类孪生支持向量机、基于二叉树结构的多分类孪生支持向量机和基于“多对一”策略的多分类孪生支持向量机.基于有向无环图的多分类孪生支持向量机训练过程与基于“一对一”策略的多分类孪生支持向量机类似,但是其决策方式有其特殊的优缺点,因此本文将其也独立为一类.本文分析和总结了这六种类型的多分类孪生支持向量机的算法思想、理论基础.此外,还通过实验对比了分类性能.本文工作为各种多分类孪生支持向量机之间建立了联系比较,使得初学者能够快速理解不同多分类孪生支持向量机之间的本质区别,也对实际应用中选取合适的多分类孪生支持向量机起到一定的指导作用.    

5.  基于最小二乘支持向量机的车牌字符特征分类研究  
   刘静《计算机与数字工程》,2015年第7期
   最小二乘支持向量机是一种新的有效的机器学习算法。论文介绍了最小二乘支持向量机模型,研究了最小二乘支持向量机算法和经典的多类分类算法,提取车牌字符的奇异值特征,将奇异值系数特征作为最小二乘支持向量机的输入进行训练和分类。实验采用 LS‐SVM 工具箱,得到了较好的结果。    

6.  多类支持向量机在文本分类中的应用  被引次数:1
   张苗  张德贤《计算机与现代化》,2008年第5期
   传统的支持向量机(SVM)是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。本文在对现有主要的四种多类支持向量机分类算法讨论的基础上,结合文本分类的特点,详细介绍了决策树支持向量机和几种改进多类支持向量机方法在文本分类中的应用。    

7.  一种改进的支持向量机及其在癌症诊断中的应用  
   王晶  卫金茂《计算机应用》,2006年第26卷第2期
   为了改善支持向量机的泛化能力,提出了一种改进的支持向量机——SUB SVM,它把对所有训练数据训练得到的主支持向量再次训练,用得到的次支持向量构造SVM非线性分类器,将该算法应用在癌症诊断中,取得了比传统SVM分类器更高的识别率。    

8.  基于几何思想的快速支持向量机算法  被引次数:1
   孔锐  张冰《中国图象图形学报》,2007年第12卷第6期
   为了快速地进行分类,根据几何思想来训练支持向量机,提出了一种快速而简单的支持向量机训练算法——几何快速算法。由于支持向量机的最优分类面只由支持向量决定,因此只要找出两类样本中所有支持向量,那么最优分类面就可以完全确定。该新的算法根据两类样本的几何分布,先从两类样本的最近点开始;然后通过不断地寻找违反KKT条件的样本点来找出支持向量;最后确定最优分类面。为了验证新算法的有效性,分别利用两个公共数据库,对新算法与SMO算法及DIRECTSVM算法进行了实验对比,实验结果显示,新算法的分类精度虽与其他两个方法相当,但新算法的运算速度明显比其他两个算法快。    

9.  多类支持向量机文本分类方法  被引次数:8
   张苗  张德贤《计算机技术与发展》,2008年第18卷第3期
   文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一.传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题.介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较.提出了多类支持向量机文本分类中存在的问题和今后的发展.    

10.  多类支持向量机文本分类方法  
   张苗  张德贤《微机发展》,2008年第18卷第3期
   文本分类是数据挖掘的基础和核心,支持向量机(SVM)是解决文本分类问题的最好算法之一。传统的支持向量机是两类分类问题,如何有效地将其推广到多类分类问题仍是一项有待研究的课题。介绍了支持向量机的基本原理,对现有主要的多类支持向量机文本分类算法进行了讨论和比较。提出了多类支持向量机文本分类中存在的问题和今后的发展。    

11.  基于复合核支持向量回归机的多类分类算法  
   陈 垚  宋召青《太赫兹科学与电子信息学报》,2017年第15卷第6期
   针对传统支持向量机(SVM)在解决多类分类问题时需要训练多个分类器、存在不可分区域等问题,研究了基于支持向量回归机的多类分类算法。利用回归思想求解多类分类问题,将分类样本作为回归输入,样本的类别标识作为回归输出,通过支持向量回归机训练拟合出各样本与其类别标识之间的函数关系。将待分类样本代入回归函数,对其输出取整后即可得到样本类别。该算法仅使用1个分类器,明显简化了分类过程。另外,引入复合核函数来提高支持向量回归机的性能。采用加州大学欧文分校(UCI)例题库中的多类分类问题进行仿真验证,并将改进算法与传统算法作对比,结果表明改进算法在分类速度和准确率上都有显著提高。    

12.  基于支持向量机的网页多类分类技术  
   王晓锋 秦玉平《大连轻工业学院学报》,2007年第26卷第4期
   基于支持向量机的网页分类技术是数据挖掘中一个研究热点领域.支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.但支持向量机本身是一个两类问题的判别方法。不能直接应用于多类问题.总结了当前常用的几种支持向量机多类分类算法。分别从训练速度、测试速度、分类精度三方面对这些分类方法进行了讨论,并给出了进一步的研究方向.    

13.  基于支持向量机的网页多类分类技术  
   王晓锋  秦玉平《大连工业大学学报》,2007年第26卷第4期
   基于支持向量机的网页分类技术是数据挖掘中一个研究热点领域.支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势,但支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.总结了当前常用的几种支持向量机多类分类算法,分别从训练速度、测试速度、分类精度三方面对这些分类方法进行了讨论,并给出了进一步的研究方向.    

14.  支持向量机加权类增量学习算法研究  
   秦玉平  李祥纳  王秀坤  王春立《计算机工程与应用》,2007年第43卷第34期
   针对支持向量机类增量学习过程中参与训练的两类样本数量不平衡而导致的错分问题,给出了一种加权类增量学习算法,将新增类作为正类,原有类作为负类,利用一对多方法训练子分类器,训练时根据训练样本所占的比例对类加权值,提高了小类别样本的分类精度。实验证明了该方法的有效性。    

15.  一种基于支持向量机的专业中文网页分类器  被引次数:5
   李亮  刘万春  徐泉清  朱玉文《计算机应用》,2004年第24卷第4期
   文中提出了一种基于支持向量机的专业中文网页分类算法,利用支持向量机对网页进行二类分类,找出所需专业的中文网页;然后利用向量空间模型,对分类好的专业网页进行多类分类。在构造支持向量机的过程中,为了提高分类的召回率,采用了一种偏移因子。该算法只需要计算二类SVM分类器,实验表明,它不仅具有较高的训练效率,同时能得到很高的分类精确率和召回率。    

16.  基于OC-SVM的大型数据集分类方法  
   张瑜  罗可《计算机工程与应用》,2011年第47卷第4期
   支持向量机是最有效的分类技术之一,具有很高的分类精度和良好的泛化能力,但其应用于大型数据集时的训练过程还是非常复杂。对此提出了一种基于单类支持向量机的分类方法。采用随机选择算法来约简训练集,以达到提高训练速度的目的;同时,通过恢复超球体交集中样本在原始数据中的邻域来保证支持向量机的分类精度。实验证明,该方法能在较大程度上减小计算复杂度,从而提高大型数据集中的训练速度。    

17.  基于支持向量机的供应链伙伴企业选择方法的研究  被引次数:6
   张辉  张浩  徐征  陆剑峰《计算机集成制造系统》,2004年第10卷第7期
   为了克服传统的机器学习方法在供应链管理领域应用存在的局限性,介绍了一种新的支持向量机的机器学习算法。以企业为背景,运用支持向量机算法来解决多类分类问题和函数回归问题。通过在某企业供应链伙伴选择中的实际应用,并与用神经元网络训练得出的结果进行对比,证明这种支持向量机的机器学习算法,不仅具有较高的训练效率,而且有更高的精确度。    

18.  基于支持向量机故障诊断方法  被引次数:1
   谢芳芳  章兢  郑剑《传感器世界》,2006年第12卷第4期
   支持向量机是一种基于统计学习理论的机器学习算法,它能在训练样本很少的情况下达到很好的分类效果.本文以双螺杆挤出机为例,介绍了基于支持向量机的多故障分类器,探讨了"成对分类"与"一类对多类"两种多类分类算法的应用.诊断实例表明,基于支持向量机的多故障分类器对设备故障具有很好的分类效果.    

19.  基于SVM算法的分类器设计  
   危傲《电子科技》,2015年第28卷第4期
   介绍了支持向量机算法的基本思想、数据分类的概念,分析了传统支持向量机算法的一般特性.用Libsvm工具箱实现了基于SVM算法的分类器设计,并用公共数据库中的数据集对设计的分类器进行了测试,重点针对训练样本的选择、参数的影响选择与优化问题进行了研究.实验结果表明,在应用支持向量机算法做数据分类时,选择合适的训练样本和参数有利于提高分类器的准确度.    

20.  基于核鲁棒k-均值的模糊支持向量机算法  
   王孝彤  程远志《智能计算机与应用》,2015年第3期
   支持向量机对训练数据中的噪声敏感,为了解决这一问题,本文提出基于核鲁棒k-均值算法的模糊支持向量机算法。算法首先在每类训练样本上应用核鲁棒k-均值算法,得到每个样本的模糊隶属度,将该隶属度赋予训练样本,得到模糊训练集,然后在模糊训练集上训练模糊支持向量机,得到分类决策函数。实验表明,对于带噪声的训练样本,本文的算法能够为噪声样本赋予小的隶属度,提高分类准确率。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号