首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 78 毫秒

1.  融合用户信任模型的协同过滤推荐算法  
   杨秀梅  孙咏  王丹妮  李岩《计算机系统应用》,2016年第25卷第7期
   协同过滤推荐是电子商务系统中最为重要的技术之一.随着电子商务系统中用户数目和商品数目的增加,用户-项目评分数据稀疏性问题日益显著.传统的相似度度量方法是基于用户共同评分项目计算的,而过于稀疏的评分使得不能准确预测用户偏好,导致推荐质量急剧下降.针对上述问题,本文考虑用户评分相似性和用户之间信任关系对推荐结果的影响,利用层次分析法实现用户信任模型的构建,提出一种融合用户信任模型的协同过滤推荐算法.实验结果表明: 该算法能够有效反映用户认知变化,缓解评分数据稀疏性对协同过滤推荐算法的影响,提高推荐结果的准确度.    

2.  融合争议度特征的协同过滤推荐算法  
   张学胜  陈超  张迎峰  俞能海《小型微型计算机系统》,2012年第33卷第4期
   基于项目的协同过滤推荐算法在电子商务中有着广泛的引用,该算法的核心是计算项目之间的相似度.传统的计算项目相似度算法仅仅通过项目间共同用户评分值差异来计算,在数据稀疏情况下,项目间共同用户评分值很少,导致此类算法性能严重下降.针对此问题,从项目间的整体评分角度出发,提出争议相似度的概念,争议相似度从项目间评分方差差异的角度衡量项目间相似性.将争议度特征融合到基于项目之间共同用户评分的传统相似度算法中,进而提出了融合项目争议度特征的协同过滤推荐算法,最终缓解了传统算法在稀疏数据情况下相似度计算不准确的问题.实验结果表明该算法在数据稀疏环境下可以明显提升推荐质量.    

3.  采用信任网络增强的协同过滤算法  
   李熠晨  陈莉  石晨晨  兰小艳《计算机应用研究》,2018年第35卷第1期
   由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通过引入社会网络中常用的信任关系,即在原始的“用户-项目”评分矩阵上,通过信任计算建立用户间的信任关系,并使用传播规则传递信任关系,构建一个用户信任网络。最终使用用户间的信任度与相似度线性加权作为新的权重进行推荐。在真实的数据集上进行测试,实验结果表明,ECFATN算法不仅在一定程度上缓解了数据稀疏性问题并提高了推荐精度,而且由于信任关系的引入,对于用户冷启动问题也有较大的提升。    

4.  基于共同评分项目数和用户兴趣的协同过滤推荐方法  
   王雪霞  李青  李季红《计算机应用》,2014年第34卷第11期
   在推荐系统中,为了在一定程度上减少用户评分数据稀疏对推荐效果的负面影响,提出了一种基于用户共同评分项目数和用户兴趣的协同过滤推荐算法.此算法将用户共同评分项目数和用户兴趣相似度相结合,使用户之间的相似度计算更加准确,为目标用户提供更好的推荐结果.仿真实验结果表明:所提算法比基于Pearson相似度计算方法的算法推荐效果更优,具有更小的平均绝对误差(MAE),表明了其有效性和可行性.    

5.  基于评分信息量的协同过滤算法研究  
   冯永  陈显勇《计算机工程与应用》,2013年第20期
   传统的协同过滤算法中,依靠用户评分大小计算用户间相似度,但是评分数据稀疏性使相似度计算不够准确。针对此问题,提出了基于评分信息量的相似度计算方法;在推荐系统中项目有多种可选评分,该方法将参与评分的用户数量转换为评分信息量,以此结合用户评分大小计算相似度。实验结果表明,相对于传统协同过滤算法,该方法在一定程度上减少了评分数据稀疏性带来的负面影响,有效地提高了预测评分准确性。    

6.  融合影响因子的加权协同过滤算法  
   《计算机工程》,2014年第8期
   现有的协同过滤算法在计算用户间或项目间相似度时,由于数据集稀疏导致相似度差值过小,难以找出真正的相似用户与相似项目。为此,提出一种融合影响因子的加权协同过滤算法。利用基于用户间与项目间共同评分用户个数的影响因子,修正用户及项目相似度,并分别定义基于项目与用户的预测评分计算算法,将项目间与用户间的共同评分项作为加权系数,得出最终的预测评分算法,根据最终预测评分,采用TopN算法进行推荐。在真实数据集上的实验结果表明,该算法在不同邻居数上的平均绝对误差小于0.78,明显提高了推荐质量。    

7.  融合类别信息和用户兴趣度的协同过滤推荐算法  
   何明  肖润  刘伟世  孙望《计算机科学》,2017年第44卷第8期
   协同过滤直接根据用户的行为记录去预测其可能感兴趣的项目,是现今最成功、应用最广泛的推荐技术。推荐的准确度受相似性度量方法效果的影响。传统的相似性度量方法主要关注用户共同评分项之间的相似度,忽视了评分项目中的类别信息,在面对数据稀疏性问题时存在一定的不足。针对上述问题,提出基于分类信息 的评分矩阵填充方法,结合用户兴趣相似度计算方法并充分考虑到评分项目的类别信息,使得兴趣度的度量更加符合推荐系统应用的实际情况。实验结果表明,该算法可以弥补传统相似性度量方法的不足,缓解评分数据稀疏对协同过滤算法的影响,能够提高推荐的准确性、多样性和新颖性。    

8.  面向社会化电子商务的信任感知协同过滤推荐方法  
   蔡志文  林建宗《计算机应用》,2015年第35卷第1期
   为提高社会化电子商务推荐服务的精确度和有效性,综合考虑交易评价得分、交易次数、交易金额、直接信任、推荐信任等影响社会化电子商务用户信任关系的因素,设计了一种信任感知协同过滤推荐方法.该方法利用置信因子计算用户间的信任关系,采用余弦相关度法计算用户间的相似度,引入调和因子综合用户信任关系和用户相似度对商品预测评分的影响,以平均绝对误差(MAE)、评分覆盖率和用户覆盖率作为评价指标.实验结果表明,与标准协同过滤推荐方法、基于规范矩阵因式分解的推荐方法相比,信任感知协同过滤推荐方法将MAE降低到0.162,并将评分覆盖率和用户覆盖率分别提高到77%和80%,能够解决交易评价较少商品的推荐问题.    

9.  融合信任计算的协同过滤推荐方法  
   《模式识别与人工智能》,2014年第5期
   协同过滤推荐是目前应用最为广泛的推荐策略之一,但存在数据稀疏和难扩展问题.文中在传统基于用户的协同过滤推荐算法的基础上,引入信任关系计算,利用信任关系的条件传递特性,设计并构建一个集用户声望信任和用户局部信任的混和信任网络,并将用户间评分相似度和网络中用户间信任评价度结合,为用户寻找更多基于信任因素和兴趣因素的二维相似近邻.在Epinions数据集上以平均绝对误差(MAE)和均方根误差(RSME)等作为实验评价指标,对该方法进行验证实验.结果表明相比传统协同过滤推荐算法,该方法在MAE上提高约6.8%,最优值达到0.7513,t检验的结果也表明该方法能显著提高推荐系统性能.    

10.  基于多社交数据源的协同推荐方法研究  
   王瑞琴  潘俊  李一啸《电信科学》,2015年第31卷第6期
   协同过滤推荐作为一种有效的推荐方法,普遍存在数据稀疏性和冷启动问题,利用社交网络的多项数据源对协同推荐方法进行了改进.为了克服评分矩阵的稀疏性问题,提出结合用户评分相似度和用户信任度选择推荐邻居,同时对用户相似度计算进行了改进;提出了一种简单有效的信任推理方法,能够识别出用户间隐含的间接信任关系,进一步缓解了数据稀疏性问题;为了解决推荐系统的冷启动问题,提出综合利用项目的类型属性信息和领域专家信息进行联合推荐.实验结果表明,提出的改进策略非常有效,在精度和召回率方面都较已有方法具有明显改善.    

11.  基于项目语义相似度的协同过滤推荐算法  被引次数:3
   肖敏  熊前兴《武汉理工大学学报》,2009年第31卷第3期
   协同过滤是个性化推荐系统中最广泛使用的推荐技术.在用户评分矩阵极度稀疏情况下,传统的协同过滤推荐算法中用户相似度的计算建立在用户评分项目交集之上,并且没有考虑不同项目之间存在的语义关系,从而导致推荐准确率低.针对上述问题,文章提出一种新的基于项目语义相似度的协同过滤算法(CFSSI,collaborative filtering basedon semantic similarity between Items):首先利用领域本体计算项目之间的相似性,填充评分矩阵缺失值,而后根据修正的余弦相似度计算用户相似性.实验结果表明:算法可以在用户评分数据极端稀疏的情况下,仍能取得较高的推荐质量.    

12.  一种结合基于项目和用户的个性化推荐算法  
   黎明  徐德智《小型微型计算机系统》,2011年第32卷第4期
   推荐系统是电子商务系统中最重要的技术之一.协同过滤技术是当今应用最普遍的个性化推荐算法.针对用户评分数据的极端稀疏性和算法的可扩展性,首先利用云模型计算项目间相似度来预测用户对未评分项目的评分,来增加用户评分数据,再根据项目分类信息将用户-项目评分矩阵转换为用户-类别矩阵,降低了评分矩阵的维度,最后利用云模型计算用户间相似度,得到目标用户的最近邻居.实验结果表明,该方法具有较小的MAE,提高了推荐系统的推荐质量.    

13.  一种融合信任和用户情感偏好的协同过滤算法  
   秦继伟  郑庆华  田锋  王康《软件学报》,2013年第24卷第S2期
   以调节用户情感为应用背景,为使资源满足用户情感需求,提出一种融合信任和用户情感偏好的协同过滤算法.首先,针对现有协同过滤中用户偏好模型扩展性不足的问题,提出融合评分和信任的用户偏好模型,依据评分数据集设定共同评分资源数目的阈值,有策略地选择用户间评分相似度和信任值,计算用户偏好程度;其次,定制资源的情感内涵特征,在资源集合生成过程中,通过引入用户对资源情感内涵的偏好度量机制,弥补了以往协同过滤推荐对用户情感的忽略.最后,实验结果表明,该算法有效地解决了协同过滤中用户偏好模型扩展性不足的问题,提高了分类准确度,增加了用户选中满意资源的机会.    

14.  基于用户语义相似性的协同过滤推荐算法  
   李想  周良《中国制造业信息化》,2013年第1期
   为了解决协同过滤推荐中的稀疏性问题,提出一种基于用户语义相似性的协同过滤推荐算法。算法考虑到项目之间内在的语义关系,通过构建领域本体来计算项目之间的语义相似度,并综合项目语义相似度和用户评分数据来度量用户语义相似性。实验结果表明,该算法在用户评分数据极端稀疏的情况下,依然可以获得较高的推荐质量。    

15.  改进加权Slope one协同过滤推荐算法研究  
   王潘潘  钱谦  王锋《传感器与微系统》,2017年第36卷第7期
   协同过滤推荐是最成功的推荐技术之一,但数据稀疏性问题导致推荐准确度和推荐效率不高.针对这个问题,提出了一种改进的加权Slope one协同过滤推荐算法.计算用户之间的评分相似度,找出每个用户的最近邻;根据最近邻用户评分,使用基于用户的协同过滤和改进的加权Slope one算法的加权评分预测目标用户的未评分项目;给出推荐.实验过程中采用MovieLens数据集作为测试数据.实验结果表明:与原算法相比,算法提高了预测准确度,有效提高了推荐性能.    

16.  融合信任用户的协同过滤推荐算法  
   林建辉  严宣辉  黄波《计算机系统应用》,2017年第26卷第6期
   推荐系统中普遍存在的数据稀疏性问题使得协同过滤算法所要求的近邻搜索准确性降低,以及搜索到的最近邻用户过少,这对整个推荐系统的推荐质量和推荐的准确性产生重要影响,而这个问题对于传统的协同过滤推荐是难以解决的.针对这个问题,通过将用户之间的信任关系与对项目的评分相似性相融合,提出一种融合信任用户的协同过滤推荐算法,利用有向网络图构建的用户之间的信任关系,弥补了仅仅依靠计算用户间相似性不能准确衡量用户之间关系的缺陷.实验结果证明,该算法能够提高系统的推荐质量和准确性.    

17.  基于领域知识的协同过滤推荐算法  
   闫祥雨  谢红薇  孙静宇《电脑开发与应用》,2010年第23卷第4期
   传统协同过滤推荐算法中项目相似度的计算建立在用户评分项目交集之上,没有考虑不同项目之间所存在的语义关系,致使推荐准确率低。基于领域知识进行项目相似度计算的协同过滤算法在用户评分的共同项目很少的情况下仍能给出不错的推荐。实验结果表明,该算法可以有效地解决用户评分数据极端稀疏的问题,提高推荐系统的推荐质量。    

18.  基于GEP-RBF的协同过滤数据稀疏性问题研究  
   古凌岚《计算机与数字工程》,2013年第41卷第9期
   针对传统协同过滤推荐算法的数据稀疏性问题,提出了基于GEP-RBF的协同过滤推荐算法.该算法对目标用户偏好的分类范畴进行了分析,构建了局部用户-项目评分矩阵,同时利用GEP优化RBF神经网络,预测局部用户-项目评分矩阵的缺失评分,平滑评分矩阵,并给出了用户评分项目交集阈值修正相似度的方法,提高用户相似度计算的准确性.实验结果表明,该算法能有效地缓解数据稀疏性问题,从而提高了协同过滤推荐系统的推荐质量.    

19.  结合用户聚类和项目类型的协同过滤算法  
   王巧  谢颖华  于世彩《计算机系统应用》,2016年第25卷第12期
   为了解决协同过滤算法中数据稀疏性问题,提高推荐效果,提出一种改进的协同过滤算法.该算法首先通过一种新的相似度计算方法来计算项目类型相似度,将相似度大于某阈值的项目作为目标项目的邻居;然后根据目标用户对邻居项目的评分信息来预测该用户对目标项目的评分值,并将预测值填入稀疏的用户项目评分矩阵;最后对填充后的评分矩阵采用基于用户聚类(K-means聚类)的协同过滤算法做出最终的预测评分进行推荐.在Movielens数据集上进行实验验证,结果表明该算法能够很好地缓解数据稀疏性、降低计算复杂度,提高推荐精度.    

20.  综合用户特征和项目属性的协作过滤推荐算法  
   孙龙菲  黄梦醒《计算机应用研究》,2014年第31卷第2期
   通过分析传统协作过滤推荐算法面临的数据集稀疏性问题及当前解决方法的优缺点, 在基于项目的协作过滤推荐算法的基础上, 提出了一种综合用户特征和项目属性的协作过滤推荐算法。通过分析不同特征的用户对项目的各种属性的兴趣度, 综合已评分的项目属性预测未评分项目, 降低数据集的稀疏性, 提高项目相似度计算的准确性。在MovieLens数据集上的实验结果表明, 在数据极端稀疏的情况下, 能够有效地降低数据集稀疏性, 并在一定程度上缓解了协作过滤推荐算法中的冷启动问题, 提高了推荐算法的预测准确度。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号