首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
随机梯度下降(stochastic gradient descent,SGD)是一种求解大规模优化问题的简单高效方法,近期的研究表明,在求解强凸优化问题时其收敛速率可通过α-suffix平均技巧得到有效的提升.但SGD属于黑箱方法,难以得到正则化优化问题所期望的实际结构效果.另一方面,COMID(composite objective mirror descent)是一种能保证L1正则化结构的稀疏随机算法,但对于强凸优化问题其收敛速率仅为O(logT?T).主要考虑"L1+Hinge"优化问题,首先引入L2强凸项将其转化为强凸优化问题,进而将COMID算法和α-suffix平均技巧结合得到L1MD-α算法.证明了L1MD-α具有O(1?T)的收敛速率,并且获得了比COMID更好的稀疏性.大规模数据库上的实验验证了理论分析的正确性和所提算法的有效性.  相似文献   

2.
邵言剑  陶卿  姜纪远  周柏 《软件学报》2014,25(9):2160-2171
随机梯度下降(SGD)算法是处理大规模数据的有效方法之一.黑箱方法SGD在强凸条件下能达到最优的O(1/T)收敛速率,但对于求解L1+L2正则化学习问题的结构优化算法,如COMID(composite objective mirror descent)仅具有O(lnT/T)的收敛速率.提出一种能够保证稀疏性基于COMID的加权算法,证明了其不仅具有O(1/T)的收敛速率,还具有on-the-fly计算的优点,从而减少了计算代价.实验结果表明了理论分析的正确性和所提算法的有效性.  相似文献   

3.
L1正则化在稀疏学习的研究中起关键作用,使用截断L1正则化项往往可以获得更好的准确率,但却导致了非凸优化问题.目前,主要采用多阶段凸松弛(multi-stage convex relaxation,MSCR)算法进行求解,由于每一阶段都需要求解一个凸优化问题,计算代价较大.为了弥补上述不足,提出了一种求解截断L1正则化项非凸学习问题的坐标下降算法(Non-convex CD).该算法只需在多阶段凸松弛算法的每一阶段执行单步的坐标下降算法,有效降低了计算复杂性.理论分析表明所提出的算法是收敛的.针对Lasso问题,在大规模真实数据库作了实验,实验结果表明,Non-convex CD在取得和MSCR几乎相同准确率的基础上,求解的CPU时间甚至优于求解凸问题的坐标下降方法.为了进一步说明所提算法的性能,进一步研究了Non-convex CD在图像去模糊化中的应用问题.  相似文献   

4.
基于次梯度的L1正则化Hinge损失问题求解研究   总被引:1,自引:0,他引:1  
Hinge损失函数是支持向量机(support vector machines,SVM)成功的关键,L1正则化在稀疏学习的研究中起关键作用.鉴于两者均是不可导函数,高阶梯度信息无法使用.利用随机次梯度方法系统研究L1正则化项的Hinge损失大规模数据问题求解.首先描述了直接次梯度方法和投影次梯度方法的随机算法形式,并对算法的收敛性和收敛速度进行了理论分析.大规模真实数据集上的实验表明,投影次梯度方法对于处理大规模稀疏数据具有更快的收敛速度和更好的稀疏性.实验进一步阐明了投影阈值对算法稀疏度的影响.  相似文献   

5.
L1正则化机器学习问题求解分析   总被引:3,自引:1,他引:2       下载免费PDF全文
孔康  汪群山  梁万路 《计算机工程》2011,37(17):175-177
以稀疏学习为主线,从多阶段、多步骤优化思想的角度出发,对当前流行的L1正则化求解算法进行分类,比较基于次梯度的多步骤方法、基于坐标优化的多阶段方法,以及软L1正则化方法的收敛性能、时空复杂度和解的稀疏程度。分析表明,基于机器学习问题特殊结构的学习算法可以获得较好的稀疏性和较快的收敛速度。  相似文献   

6.
在大数据领域中预测高维稀疏矩阵中的缺失数据,通常采用随机梯度下降算法构造隐语义模型来对缺失数据进行预测。在随机梯度下降算法来求解模型的过程中经常加入正则化项来提高模型的性能,由于[L1]正则化项不可导,目前在隐语义模型中主要通过加入[L2]正则化项来构建隐语义模型(SGD_LF)。但因为[L1]正则化项能提高模型的稀疏性增强模型求解能力,因此提出一种基于[L1]和[L2]正则化约束的隐语义(SPGD_LF)模型。在通过构建目标函数时,同时引入[L1]和[L2]正则化项。由于目标函数满足利普希茨条件,并通过二阶的泰勒展开对目标函数进行逼近,构造出随机梯度下降的求解器,在随机梯度下降求解隐语义模型的过程中通过软阈值来处理[L1]正则化项所对应的边界优化问题。通过此优化方案,可以更好地表达目标矩阵中的已知数据在隐语义空间中的特征和对应的所属社区关系,提高了模型的泛化能力。通过在大型工业数据集上的实验表明,SPGD_LF模型的预测精度、稀疏性和收敛速度等性能都有显著提高。  相似文献   

7.
针对鞍点求解结果收敛速度慢、CPU消耗时间较长等问题,提出一种正则化HSS预处理鞍点矩阵的多尺度算法.运用最优正则化方法确定正则参数,得到计算最优正则参数公式;通过HSS方法完成系数矩阵预处理,得到新的预处理子NHSS;为了更加具体地分析预处理后的鞍点矩阵多尺度算法特征值分布形态,择优选取预处理子参数,确保算法收敛速率.通过仿真,结果表明所提算法可以提升鞍点矩阵方程求解的收敛速率,减少计算过程的CPU占用率,具有较好的鲁棒性,在大规模线性方程运算中可进行广泛应用.  相似文献   

8.
提出一种L1/2正则化Logistic回归模型,并针对此模型构造有效的求解算法.文中模型基于L1/2正则化理论建立,有效改善传统模型存在的变量选择与计算过拟合问题.文中算法基于"坐标下降"思想构造,快速有效.在一系列人工和实际数据集上的实验表明,文中算法在分类问题中具有良好的变量选择能力和预测能力,优于传统Logistic回归和L1正则化Logistic回归.  相似文献   

9.
提出L1范数正则化支持向量机(SVM)聚类算法。该算法能够同时实现聚类和特征选择功能。给出L1范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题。在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择。  相似文献   

10.
提出L1范数正则化支持向量机(SVM)聚类算法.该算法能够同时实现聚类和特征选择功能.给出LI范数正则化SVM聚类原问题和对偶问题形式,采用类似迭代坐标下降的方法求解困难的混合整数规划问题.在多组数据集上的实验结果表明,L1范数正则化SVM聚类算法聚类准确率与L2范数正则化SVM聚类算法相近,而且能够实现特征选择.  相似文献   

11.
交替方向乘子法(ADMM)在机器学习问题中已有一些实际应用。针对大规模数据的处理和非光滑损失凸优化问题,将镜面下降方法引入原ADMM批处理算法,得到了一种新的改进算法,并在此基础上提出了一种求解非光滑损失凸优化问题的坐标优化算法。该算法具有操作简单、计算高效的特点。通过详尽的理论分析,证明了新算法的收敛性,在一般凸条件下其具有目前最优的收敛速度。最后与相关算法进行了对比,实验结果表明该算法在保证解稀疏性的同时拥有更快的收敛速度。  相似文献   

12.
在光滑问题随机方法中使用减小方差策略,能够有效改善算法的收敛效果.文中同时引用加权平均和减小方差的思想,求解“L1+L2+Hinge”非光滑强凸优化问题,得到减小方差加权随机算法(α-HRMDVR-W).在每步迭代过程中使用减小方差策略,并且以加权平均的方式输出,证明其具有最优收敛速率,并且该收敛速率不依赖样本数目.与已有减小方差方法相比,α-HRMDVR-W每次迭代中只使用部分样本代替全部样本修正梯度.实验表明α-HRMDVR-W在减小方差的同时也节省CPU时间.  相似文献   

13.
陇盛  陶蔚  张泽东  陶卿 《软件学报》2022,33(4):1231-1243
与梯度下降法相比,自适应梯度下降方法(AdaGrad)利用过往平方梯度的算数平均保存了历史数据的几何信息,在处理稀疏数据时获得了更紧的收敛界.另一方面,Nesterov加速梯度方法(Nesterov's accelerated gradient,NAG)在梯度下降法的基础上添加了动量运算,在求解光滑凸优化问题时具有数量...  相似文献   

14.
针对逆强化学习算法在训练初期由于专家样本稀疏所导致的学习速率慢的问题,提出一种基于生成对抗网络(Generative Adversarial Networks,GAN)的最大熵逆强化学习算法。在学习过程中,结合专家样本训练优化生成对抗网络,以生成虚拟专家样本,在此基础上利用随机策略生成非专家样本,构建混合样本集,结合最大熵概率模型,对奖赏函数进行建模,并利用梯度下降方法求解最优奖赏函数。基于所求解的最优奖赏函数,利用正向强化学习方法求解最优策略,并在此基础上进一步生成非专家样本,重新构建混合样本集,迭代求解最优奖赏函数。将所提出的算法与MaxEnt IRL算法应用于经典的Object World与Mountain Car问题,实验表明,该算法在专家样本稀疏的情况下可以较好地求解奖赏函数,具有较好的收敛性能。  相似文献   

15.
王玉军 《微机发展》2013,(12):55-58
软阈值缩减迭代算法(ISTA)以其简单的操作流程成为了机器学习流行的优化算法,但是收敛速度比较慢,仅为0(1/k)。快速软阈值缩减迭代算法(FISTA)通过加速技巧将收敛速度提高了一个数量级,达到了0(1/k)。然而,FISTA将托k特征向量每一维看成是独立同分布的,丢失了各维之间的相关性,会导致准确率下降和额外的时间开销。为了弥补上述的不足,文中提出了一种相关快速软阈值坐标下降算法(RFTCD)。通过大规模数据库实验证实了RFTCD的正确性和有效性。  相似文献   

16.
Consideration was given to estimation of the eigenvector corresponding to the greatest eigenvalue of a stochastic matrix. There exist numerous applications of this problem arising at ranking the results of search, coordination of the multiagent system actions, network control, and data analysis. The standard technique for its solution comes to the power method with an additional regularization of the original matrix. A new randomized algorithm was proposed, and a uniform—over the entire class of the stochastic matrices of a given size—upper boundary of the convergence rate was validated. It is given by {ie342-1}, where C is an absolute constant, N is size, and n is the number of iterations. This boundary seems promising because ln(N) is smallish even for a very great size. The algorithm relies on the mirror descent method for the problems of convex stochastic optimization. Applicability of the method to the PageRank problem of ranking the Internet pages was discussed.  相似文献   

17.
In this paper, we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints. Based on neighbor communication and stochastic gradient, a distributed stochastic mirror descent algorithm is designed for the distributed resource allocation problem. Sublinear convergence to an optimal solution of the proposed algorithm is given when the second moments of the gradient noises are summable. A numerical example is also given to illustrate the eff ectiveness of the proposed algorithm.  相似文献   

18.
对于一般凸问题,对偶平均方法的收敛性分析需要在对偶空间进行转换,难以得到个体收敛性结果.对此,文中首先给出对偶平均方法的简单收敛性分析,证明对偶平均方法具有与梯度下降法相同的最优个体收敛速率Ο(lnt/t).不同于梯度下降法,讨论2种典型的步长策略,验证对偶平均方法在个体收敛分析中具有步长策略灵活的特性.进一步,将个体收敛结果推广至随机形式,确保对偶平均方法可有效处理大规模机器学习问题.最后,在L1范数约束的hinge损失问题上验证理论分析的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号