共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
高斯过程及其在高光谱图像分类中的应用 总被引:1,自引:0,他引:1
高光谱遥感图像分类是高光谱成像信息处理的研究热点,高光谱成像的内在特点对于分类器设计具有直接影响.高斯过程是近年来发展迅速的一种新的机器学习方法,具备容易实现、超参数可自适应获取以及预测输出具有概率意义等优点,比较适合于处理图像分类问题.首先对高斯过程的基本概念及其主要的分类算法进行了简要介绍,然后在对高光谱图像分类的特点和高光谱图像分类的研究现状的分析基础上,讨论了基于高斯过程的高光谱图像分类的基本思想,提出了基于空间约束的高斯过程分类和基于半监督高斯过程分类等适合高光谱图像分类的新方法.最后对基于高斯过程的高光谱图像分类研究的发展趋势进行了展望. 相似文献
3.
介绍了以单面判别平面、最优权重向量和权位判定逻辑为基本思想的分段线性分类方法(PLC)。在多时相数字视频数据实浏中,PLC的处理速度虽略低于平行六面休分类法(PPC),却远高于高斯最大似然分类法(GMLC);而PLC的分类精度不但与GMLC相近,且远高于PPC。实验表明,在遥感作物分类精度和运算速度方面,PLC是比GMLC或PPC更优的选择。 相似文献
4.
对分类属性数据进行处理时,现有的聚类算法一般都通过距离函数将原始数据转换为表示两两距离的距离矩阵,然后再根据距离矩阵进行聚类,聚类结果很大程度上依赖于距离函数。针对上述问题,提出一种基于最大似然原理的分类属性数据分层聚类算法,称为HAC_ML算法。HAC_ML算法优点在于直接处理分类属性数据,不依赖于距离函数,并且克服了分层聚类不能回溯的缺点。在UCI数据集上的测试结果表明与经典的ROCK算法和K-Modes算法相比,HAC_ML算法是一种有效地处理分类属性数据的分层聚类算法。 相似文献
5.
首先从分析国外星载雷达高度计中的自适应处理器入手,介绍了最大似然算法的基本理论,旨在分析最大似然算法用于雷达高度计的技术方法,并对有关公式进行了详细的推导,并对国外有关文献中的一些公式的推导错误进行了纠正。 相似文献
6.
针对视频处理中运动物体的检测和跟踪问题,提出一种基于最大似然准则Hausdorff距离的目标跟踪算法,首先利用基于GVF的Snake方法获得物体模型;然后采用基于最大似然准则的Hausdorff距离匹配后续帧中的目标,搜索策略采用类似于Rucklidge提出的多分辨率搜索方法,在不影响搜索成功率和目标定位精度的情况下, 可以显著地缩短搜索时间;最后使用Snake方法完成运动物体的轮廓更新.实验表明该方法可以较好地跟踪刚性和非刚性物体,同时对部分被遮挡的目标也有良好的跟踪效果. 相似文献
7.
8.
9.
10.
基于高阶累积量的最大似然估计方法及其应用 总被引:1,自引:0,他引:1
讨论了高距离分辨率制导雷达的近距角闪烁抑制问题,提出了利用超分辨谱估计算法对混叠在同一距离分辨单元内的两个或多个散射中心进行离析,然后采用最大似然估计方法分别估计各个散射中心谐波分量幅度与相位信息的新方法.实验结果表明,该方法能够有效克服目标多散射中心之间的干涉现象,为解决末制导过程中目标的稳定跟踪问题提供了一种有效途径. 相似文献
11.
12.
13.
针对传统的文本分类算法存在着各特征词对分类的结果影响相同、分类准确率较低、造成算法时间复杂度增加的问题,提出了一种改进的最大熵C-均值聚类文本分类方法。该方法充分结合了C-均值聚类和最大熵值算法的优点,以香农熵作为最大熵模型中的目标函数,简化分类器的表达形式,然后采用C-均值聚类算法对最优特征进行分类。仿真实验结果表明,与传统的文本分类方法相比,提出的方法能够快速得到最优分类特征子集,大大提高了文本分类准确率。 相似文献
14.
15.
词义消歧是自然语言处理中一类典型的分类问题.在分类中,特征的选择至关重要.通常情况下,特征是由人工选择的,这就要求特征选取者对于待分类的问题本身和分类模型的特点有深刻的认识.分析了汉语词义消岐中特征模板对消歧结果的影响,在此基础上提出一套基于最大熵分类模型的自动特征选择方法,包括针对所有歧义词的统一特征模板选择和针对单个歧义词的独立特征模板优化算法.实验结果表明,使用自动选择的特征,不仅简化了特征模板,而且提高了汉语词义消歧的性能.与SemEval 2007:task #5的最好成绩相比,该方法分别在微平均值MicroAve(micro-average accuracy))和宏平均值MacroAve(macro-average accuracy))上提升了3.10%和2.96%. 相似文献
16.
17.
一类图像的特征及其分布在很大程度上表达了该类的主要信息.根据这一思想,结合图像中的像素信息及形状信息提出一种类图像识别方法.对于一类给定的样本图像,首先提取每一幅图像的显著特征,根据特征分布提取特征区域;然后对所有的特征区域进行聚类得到特征词典,基于特征词及形状信息建模,同时采用最大似然估计的方法进行学习得到模型参数;最后结合特征词模型及形状模型对测试图像进行识别.实验结果表明,该方法能够有效地对2类图像进行分类和识别,同时对多数类图像也能进行较为准确的分类和识别. 相似文献
18.
19.
为了提取更具有判决力的高光谱图像特征,并防止网络因加深导致退化,在新维度残差网络(Res2Net)和压缩激活网络(squeeze and excitation network,SENet)的基础上,提出新型多尺度特征提取模块SE-Res2Net,并设计多尺度空谱融合注意力模块.为了克服网络加深带来的退化问题,SE-Res2Net模块利用通道分组提取高光谱图像细粒度的多尺度特征得到多个不同粒度的感受野,并采用通道优化模块从通道层面量化特征图的重要性.为了进一步从空间维和光谱维同时优化特征,构建多尺度空谱融合的注意力模块,利用非对称卷积在不同尺度上挖掘不同空间位置和不同光谱维特征的关系,不但能减少计算量,还能有效地提取具有判决力的空谱融合特征,从而提高高光谱图像分类的精度.在3个公共数据集Indian Pines,University of Pavia和Grss_dfc_2013上的对比实验表明,与其他较新的深度网络相比,该方法具有更高的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)和Kappa系数. 相似文献