首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
密度峰值聚类算法在处理密度不均匀的数据集时易将低密度簇划分到高密度簇中或将高密度簇分为多个子簇,且在样本点分配过程中存在误差传递问题。提出一种基于相对密度的密度峰值聚类算法。引入自然最近邻域内的样本点信息,给出新的局部密度计算方法并计算相对密度。在绘制决策图确定聚类中心后,基于对簇间密度差异的考虑,提出密度因子计算各个簇的聚类距离,根据聚类距离对剩余样本点进行划分,实现不同形状、不同密度数据集的聚类。在合成数据集和真实数据集上进行实验,结果表明,该算法的FMI、ARI和NMI指标较经典的密度峰值聚类算法和其他3种聚类算法分别平均提高约14、26和21个百分点,并且在簇间密度相差较大的数据集上能够准确识别聚类中心和分配剩余的样本点。  相似文献   

2.
为了更好地评价无监督聚类算法的聚类质量,解决因簇中心重叠而导致的聚类评价结果失效等问题,对常用聚类评价指标进行了分析,提出一个新的内部评价指标,将簇间邻近边界点的最小距离平方和与簇内样本个数的乘积作为整个样本集的分离度,平衡了簇间分离度与簇内紧致度的关系;提出一种新的密度计算方法,将样本集与各样本的平均距离比值较大的对象作为高密度点,使用最大乘积法选取相对分散且具有较高密度的数据对象作为初始聚类中心,增强了K-medoids算法初始中心点的代表性和算法的稳定性,在此基础上,结合新提出的内部评价指标设计了聚类质量评价模型,在UCI和KDD CUP 99数据集上的实验结果表明,新模型能够对无先验知识样本进行有效聚类和合理评价,能够给出最优聚类数目或最优聚类范围.  相似文献   

3.
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性.  相似文献   

4.
《计算机科学与探索》2016,(11):1614-1622
密度峰聚类是一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,能够发现非球形簇。针对密度峰聚类算法需要人工确定聚类中心的缺陷,提出了一种自动确定聚类中心的密度峰聚类算法。首先,计算每个数据点的局部密度和该点到具有更高密度数据点的最短距离;其次,根据排序图自动确定聚类中心;最后,将剩下的每个数据点分配到比其密度更高且距其最近的数据点所属的类别,并根据边界密度识别噪声点,得到聚类结果。将新算法与原密度峰算法进行对比,在人工数据集和UCI数据集上的实验表明,新算法不仅能够自动确定聚类中心,而且具有更高的准确率。  相似文献   

5.
以网格化数据集来减少聚类过程中的计算复杂度,提出一种基于密度和网格的簇心可确定聚类算法.首先网格化数据集空间,以落在单位网格对象里的数据点数表示该网格对象的密度值,以该网格到更高密度网格对象的最近距离作为该网格的距离值;然后根据簇心网格对象同时拥有较高的密度和较大的距离值的特征,确定簇心网格对象,再通过一种基于密度的划分方式完成聚类;最后,在多个数据集上对所提出算法与一些现有聚类算法进行聚类准确性与执行时间的对比实验,验证了所提出算法具有较高的聚类准确性和较快的执行速度.  相似文献   

6.
陈晋音  何辉豪 《自动化学报》2015,41(10):1798-1813
面对广泛存在的混合属性数据,现有大部分混合属性聚类算法普遍存在聚类 质量低、聚类算法参数依赖性大、聚类类别个数和聚类中心无法准确自动确定等问题,针对 这些问题本文提出了一种基于密度的聚类中心自动确定的混合属性数据 聚类算法.该算法通过分析混合属性数据特征,将混合属性数据分为数 值占优、分类占优和均衡型混合属性数据三类,分析不同情况的特征选取 相应的距离度量方式.在计算数据集各个点的密度和距离分布图基础 上,深入分析获得规律: 高密度且与比它更高密度的数据点有较大距离的数 据点最可能成为聚类中心,通过线性回归模型和残差分析确定奇异 点,理论论证这些奇异点即为聚类中心,从而实现了自动确定聚类中心.采 用粒子群算法(Particle swarm optimization, PSO)寻找最优dc值,通过参数dc能够计算得到 任意数据对象的密度和到比它密度更高的点的最小距离,根据聚类 中心自动确定方法确定每个簇中心,并将其他点按到最近邻的更高 密度对象的最小距离划分到相应的簇中,从而实现聚类.最终将本文 提出算法与其他现有的多种混合属性聚类算法在多个数据集上进行 算法性能比较,验证本文提出算法具有较高的聚类质量.  相似文献   

7.
针对混合属性数据聚类结果精度不高、聚类结果对参数敏感等问题, 提出了基于残差分析的混合属性数据聚类算法(Clustering algorithm for mixed data based on residual analysis) RA-Clust.算法以改进的熵权重混合属性相似性度量对象间的相似性, 以提出的基于KNN和Parzen窗的局部密度计算方法计算每个对象的密度, 通过线性回归和残差分析进行聚类中心预选取, 然后以提出的聚类中心目标优化模型确定真正的聚类中心, 最后将其他数据对象按照距离高密度对象的最小距离划分到相应的簇中, 形成最终聚类.在合成数据集和UCI数据集上的实验结果验证了算法的有效性.与同类算法相比, RA-Clust具有较高的聚类精度.  相似文献   

8.
基于密度的K-means聚类中心选取的优化算法   总被引:2,自引:0,他引:2  
针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获得最优聚类。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。  相似文献   

9.
针对传统密度聚类算法因使用全局变量导致对不平衡数据集的适应能力较差的问题,提出了一种基于最小生成树的密度聚类算法.首先进行数据集密度峰值计算,用于估计全局密度;然后通过密度聚类将数据集划分为高密度区域和低密度区域;接着构建和分割最小生成树对低密度区域内样本进行关联挖掘,用于将高密度区域与低密度区域互联;最后计算簇密度并以此作为特征进行簇合并,得到聚类结果.该算法结合图论知识,将数据按密度特征进行分块后合并处理,克服了传统密度聚类算法存在的局限性.通过选取多个不平衡人工数据集和UCI数据集对该算法进行测试,验证了该算法的有效性与鲁棒性.  相似文献   

10.
针对密度峰值聚类算法存在数据集密度差异较大时,低密度区域聚类中心难以检测和参数敏感的问题,提出了一种新型密度极值算法。引入自然邻居概念寻找数据对象自然近邻,定义椭圆模型计算自然稳定状态下数据局部密度;计算数据对象余弦相似性值,用余弦相似性值来更新数据对象连通值,采用连通值划分高低密度区域和离群点;构造密度极值函数找到高低密度不同区域聚类中心点;将不同区域非聚类中心点归并到离其最近的聚类中心所在簇中。通过在合成数据集和UCI公共数据集实验分析:该算法比其他对比算法在处理密度分布差异较大数据集上取得了更好的结果。  相似文献   

11.
针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。  相似文献   

12.
王军  周凯  程勇 《计算机应用》2019,39(2):403-408
密度峰值聚类(DP)算法是一种新的基于密度的聚类算法,当它处理的单个聚类包含多个密度峰值时,会将每个不同密度峰值视为潜在聚类中心,以致难以在数据集中确定正确数量聚类,为此,提出一种混合的密度峰值聚类算法C-DP。首先,以密度峰值点为初始聚类中心将数据集划分为子簇;然后,借鉴代表点层次聚类算法(CURE),从子簇中选取分散的代表点,将拥有最小距离的代表点对的类进行合并,引入参数收缩因子以控制类的形状。仿真实验结果表明,在4个合成数据集上C-DP算法比DP算法聚类效果更好;在真实数据集上的Rand Index指标对比表明,在数据集S1上,C-DP算法比DP算法性能提高了2.32%,在数据集4k2_far上,C-DP算法比DP算法性能提高了1.13%。由此可见,C-DP算法在单个类簇中包含多密度峰值的数据集中能提高聚类的准确性。  相似文献   

13.
Clustering is an important unsupervised learning technique widely used to discover the inherent structure of a given data set. Some existing clustering algorithms uses single prototype to represent each cluster, which may not adequately model the clusters of arbitrary shape and size and hence limit the clustering performance on complex data structure. This paper proposes a clustering algorithm to represent one cluster by multiple prototypes. The squared-error clustering is used to produce a number of prototypes to locate the regions of high density because of its low computational cost and yet good performance. A separation measure is proposed to evaluate how well two prototypes are separated. Multiple prototypes with small separations are grouped into a given number of clusters in the agglomerative method. New prototypes are iteratively added to improve the poor cluster separations. As a result, the proposed algorithm can discover the clusters of complex structure with robustness to initial settings. Experimental results on both synthetic and real data sets demonstrate the effectiveness of the proposed clustering algorithm.  相似文献   

14.
针对密度峰值聚类算法受人为干预影响较大和参数敏感的问题,即不正确的截断距离dc会导致错误的初始聚类中心,而且在某些情况下,即使设置了适当的dc值,仍然难以从决策图中人为选择初始聚类中心。为克服这些缺陷,提出一种新的基于密度峰值的聚类算法。该算法首先根据K近邻的思想来确定数据点的局部密度,然后提出一种新的自适应聚合策略,即首先通过算法给出阈值判断初始类簇中心,然后依据离初始类簇中心最近分配剩余点,最后通过类簇间密度可达来合并相似类簇。在实验中,该算法在合成和实际数据集中的表现比DPC、DBSCAN、KNNDPC和K-means算法要好,能有效提高聚类准确率和质量。  相似文献   

15.
针对DBSCAN算法存在的参数敏感性和不能区分相连的不同密度的簇等缺陷,提出了一种基于DBSCAN算法的改进算法。算法提出了累积平均密度的概念,用来作为簇合并的依据,弱化了密度阈值Minpts的作用;选取密度最大的对象作为初始聚类中心,按照密度由高到低的顺序进行聚类,具有一定的层次性,因此支持变密度数据集聚类。最后,用数据集对算法进行了聚类实验。实验结果表明,改进算法具有一定的参数鲁棒性,对于相连的不同密度的簇,能够达到理想的聚类效果。  相似文献   

16.
This paper presents a new partitioning algorithm, designated as the Adaptive C-Populations (ACP) clustering algorithm, capable of identifying natural subgroups and influential minor prototypes in an unlabeled dataset. In contrast to traditional Fuzzy C-Means clustering algorithms, which partition the whole dataset equally, adaptive clustering algorithms, such as that presented in this study, identify the natural subgroups in unlabeled datasets. In this paper, data points within a small, dense region located at a relatively large distance from any of the major cluster centers are considered to form a minor prototype. The aim of ACP is to adaptively separate these isolated minor clusters from the major clusters in the dataset. The study commences by introducing the mathematical model of the proposed ACP algorithm and demonstrates its convergence to a stable solution. The ability of ACP to detect minor prototypes is confirmed via its application to the clustering of three different datasets with different sizes and characteristics.  相似文献   

17.
在现实世界中经常遇到混合数值属性和分类属性的数据, k-prototypes是聚类该类型数据的主要算法之一。针对现有混合属性聚类算法的不足,提出一种基于分布式质心和新差异测度的改进的 k-prototypes 算法。在新算法中,首先引入分布式质心来表示簇中的分类属性的簇中心,然后结合均值和分布式质心来表示混合属性的簇中心,并提出一种新的差异测度来计算数据对象与簇中心的距离,新差异测度考虑了不同属性在聚类过程中的重要性。在三个真实数据集上的仿真实验表明,与传统的聚类算法相比,本文算法的聚类精度要优于传统的聚类算法,从而验证了本文算法的有效性。  相似文献   

18.
基于密度峰值优化的谱聚类算法   总被引:1,自引:0,他引:1  
针对经典谱聚类算法无法自适应确定聚类数目、以及在处理大数据量的聚类问题时效率不高的问题,本文提出了一种基于密度峰值优化的谱聚类算法。该方法首先计算数据对象的局部密度,以及每个数据对象与较其他数据对象的最小距离,并依据一定的规则自适应产生初始聚类中心,确定聚类数目。其次,使用Nystr?m抽样来降低特征分解的计算复杂度以达到提高谱聚类算法的效率。实验结果表明,本文方法能够准确地得到聚类数目,并且有效提高聚类的准确率和效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号