首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Traditional filtering theory is always based on optimization of the expected value of a suitably chosen function of error, such as the minimum mean-square error (MMSE) criterion, the minimum error entropy (MEE) criterion, and so on. None of those criteria could capture all the probabilistic information about the error distribution. In this work, we propose a novel approach to shape the probability density function (PDF) of the errors in adaptive filtering. As the PDF contains all the probabilistic information, the proposed approach can be used to obtain the desired variance or entropy, and is expected to be useful in the complex signal processing and learning systems. In our method, the information divergence between the actual errors and the desired errors is chosen as the cost function, which is estimated by kernel approach. Some important properties of the estimated divergence are presented. Also, for the finite impulse response (FIR) filter, a stochastic gradient algorithm is derived. Finally, simulation examples illustrate the effectiveness of this algorithm in adaptive system training. Recommended by Editorial Board member Naira Hovakimyan under the direction of Editor Jae Weon Choi. This work was supported in part by the National Natural Science Foundation of China under grants 50577037 and 60604010. Badong Chen received the B.S. and M.S. degrees in Control Theory and Engineering from Chongqing University, Chongqing, China, in 1997 and 2003, respectively, and the Ph.D. degree in Computer Science and Technology from Tsinghua University, Beijing China, in 2008. He is currently a Postdoctor of the Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, China. His research interests are in signal processing, adaptive control, and information theoretic aspects of control systems. Yu Zhu received the B.S. of Radio Electronics in 1983 at Beijing Normal University, and the M.S. of Computer Applications in 1993, and the Ph.D. of Mechanical Design and Theory in 2001 at China University of Mining & Technology. He is now a Professor of the Institute of Manufacturing Engineering of Department of Precision and Mechanology of Tsinghua University. His current research interests are parallel machanism and theory, two photon micro-fabrication, ultra-precision motion system and motion control. Jinchun Hu received the Ph.D. in Control Science and Engineering from Nanjing University of Science and Technology, Nanjing, China, in 1998. Since then, he has been a postdoctoral researcher in Nanjing University of Aeronautics and Astronautics in 1999 and Tsinghua University in 2002 respectively. His research interests are in flight control, aerial Robot and intelligent control. Dr. Hu is currently an Associate Professor of the Department of Computer Science and Technology of Tsinghua University, Beijing, China. Zengqi Sun received the B.S. degree from the Department of Automatic Control, Tsinghua University, Beijing, China, in 1966 and the Ph.D. degree in Control Engineering from the Chalmas University of Technology, Sweden, in 1981. He is currently a Professor of the Department of Computer Science and Technology, Tsinghua University, Beijing, China. He is the author or coauthor of more than 100 paper and eight books on control and robotics. His research interests include robotics, intelligent control, fuzzy system, neural networks, and evolutionary computation.  相似文献   

2.
In this paper,a noverl technique adopted in HarkMan is introduced.HarkMan is a keywore-spotter designed to automatically spot the given words of a vocabulary-independent task in unconstrained Chinese telephone speech.The speaking manner and the number of keywords are not limited.This paper focuses on the novel technique which addresses acoustic modeling,keyword spotting network,search strategies,robustness,and rejection.The underlying technologies used in HarkMan given in this paper are useful not only for keyword spotting but also for continuous speech recognition.The system has achieved a figure-of-merit value over 90%.  相似文献   

3.
There is an unavoidable tradeoff between the control performance and the quality of service in networked control systems with resource constraints. To address the impact of network resources availability on requirement of bandwidth (RoB) and quality of control (QoC), an intelligent control approach to dynamic bandwidth management, namely fuzzy bandwidth management, is proposed based on fuzzy logic control technique. In order to guarantee the system’s stability, the lower and upper bound of the assignable bandwidth are evaluated in terms of linear matrix inequalities and the resource constraints, respectively. In addition, the normalizable criterions of QoC and RoB are also defined, which can estimate the performance of the whole networked control systems. Preliminary simulations are carried out to highlight the merits of the proposed approach. It is argued that the proposed approach can save significant bandwidth and simultaneously improve overall control performance in comparison with the fixed bandwidth allocation and optimal bandwidth allocation. Recommended by Editorial Board member Young Il Lee under the direction of Editor Young-Hoon Joo. This work was supported by the National Natural Science Foundation of China under Grants 60573123, 60872057, and by the Zhejiang Provincial Natural Science Foundation of China under grant Y107293. Zuxin Li received the B.Eng. degree from Zhejiang University of Technology, China, in 1995, the M.Sc. (Eng.) degree from Yunnan Univer-sity, China, in 2002, and the Ph.D. degree from Zhejiang University of Technology, China, in 2008. He is currently an Associate Professor in the School of Information Engineering, Huzhou Teachers College, China. His research interests include networked control systems and intelligent control. Wanliang Wang received the Ph.D. degree from Tongji University, China, in 2001. He is currently a Professor in Zhejiang University of Technology, China. His research interests include computer control, computer net, CMIS, and production scheduling. Yunliang Jiang received the B.S. degree in Mathematics from Zhejiang Normal University in 1989, and the M.E. and Ph.D. degrees in Computer Science and Technology from Zhejiang University, Hangzhou, China. He is currently a Professor in the School of Information Engineering, Huzhou Teachers College, China. His research interests include information fusion, artificial intelligence, and geographic information system.  相似文献   

4.
A new stick text segmentation method based on the sub connected area analysis is introduced in this paper.The foundation of this method is the sub connected area representation of text image that can represent all connected areas in an image efficiently.This method consists mainly of four steps:sub connected area classification,finding initial boundary following point,finding optimal segmentation point by boundary tracing,and text segmentaton.This method is similar to boundary analysis method but is more efficient than boundary analysis.  相似文献   

5.
A direct adaptive fuzzy control algorithm is developed for a class of uncertain SISO nonlinear systems. In this algorithm, it doesn’t require to assume that the system states are measurable. Therefore, it is needed to design an observer to estimate the system states. Compared with the numerous alternative approaches with respect to the observer design, the main advantage of the developed algorithm is that on-line computation burden is alleviated. It is proven that the developed algorithm can guarantee that all the signals in the closed-loop system are uniformly ultimately bounded and the tracking error converges to a small neighborhood around zero. The simulation examples validate the feasibility of the developed algorithm. Recommended by Editorial Board member Zhong Li under the direction of Editor Young-Hoon Joo. This work is supported by National Natural Science Foundation of China under grant 60674056, 60874056, and the Foundation of Educational Department of Liaoning Province (2008312). Yan-Jun Liu received the B.S. degree in Applied Mathematics from Shenyang University of Technology in 2001. He received the M.S. degree in Control Theory and Control Engineering from Shenyang University of Technology in 2004 and the Ph.D. degree in Control Theory and Control Engineering from Dalian University of Technology, China, in 2007. His research interests include fuzzy control theory, nonlinear control and adaptive control. Shao-Cheng Tong received the B.S. degree in Department of Mathematics from Jinzhou Normal College, China, in 1982. He received the M.S. degree in Department of Mathematics from Dalian Marine University in 1988 and the Ph.D. degree in Control Theory and Control Engineering from Northeastern University, China, in 1997. His research interests include fuzzy control theory, nonlinear control, adaptive control, and system identification etc. Wei Wang received the B.S. degree in Department of Automation from Northeastern University, China, in 1982. He received the M. S. degree in Department of Automation from Northeastern University in 1984 and the Ph.D. degree in Department of Automation from Northeastern University, China, in 1988. His research interests include adaptive predictive control, intelligent control, and production scheduling method etc. Yong-Ming Li received the B.S. degree in Applied Mathematics from Liaoning University of Technology in 2004. He received the M.S. degree in Applied Mathematics from Liaoning University of Technology in 2007. His research interests include fuzzy control theory, nonlinear control and adaptive control.  相似文献   

6.
In this paper, it is presented a novel approach for the self-sustained resonant accelerometer design, which takes advantages of an automatic gain control in achieving stabilized oscillation dynamics. Through the proposed system modeling and loop transformation, the feedback controller is designed to maintain uniform oscillation amplitude under dynamic input accelerations. The fabrication process for the mechanical structure is illustrated in brief. Computer simulation and experimental results show the feasibility of the proposed accelerometer design, which is applicable to a control grade inertial sense system. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project ST·IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the Korea Foundation for International Cooperation of Science & Technology(KICOS) through a grant provided by the Korean Ministry of Education, Science & Technology(MEST) in 2008 (No. K20601000001). Authors also thank to Dr. B.-L. Lee for the help in structure manufacturing. Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, navigation filter, and intelligent vehicle systems. Chang-Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems. Jungkeun Park is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University. Dr. Park received the Ph.D. in Electrical Engineering and Computer Science from the Seoul National University in 2004. His current research interests include embedded real-time systems design, real-time operating systems, distributed embedded real-time systems and multimedia systems. Joon Goo Park is an Assistant Professor of the Department of Electronic Engineering at Gyung Book National University, Korea. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2001. His research interests include mobile navigation and adaptive control.  相似文献   

7.
The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.  相似文献   

8.
In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.  相似文献   

9.
Neuro-fuzzy generalized predictive control of boiler steam temperature   总被引:1,自引:0,他引:1  
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,  相似文献   

10.
The Multi-Agent Distributed Goal Satisfaction (MADGS) system facilitates distributed mission planning and execution in complex dynamic environments with a focus on distributed goal planning and satisfaction and mixed-initiative interactions with the human user. By understanding the fundamental technical challenges faced by our commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to commanders. In this paper, we present an overview of the MADGS architecture and discuss the key components that formed our initial prototype and testbed. Eugene Santos, Jr. received the B.S. degree in mathematics and Computer science and the M.S. degree in mathematics (specializing in numerical analysis) from Youngstown State University, Youngstown, OH, in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in computer science from Brown University, Providence, RI, in 1988 and 1992, respectively. He is currently a Professor of Engineering at the Thayer School of Engineering, Dartmouth College, Hanover, NH, and Director of the Distributed Information and Intelligence Analysis Group (DI2AG). Previously, he was faculty at the Air Force Institute of Technology, Wright-Patterson AFB and the University of Connecticut, Storrs, CT. He has over 130 refereed technical publications and specializes in modern statistical and probabilistic methods with applications to intelligent systems, multi-agent systems, uncertain reasoning, planning and optimization, and decision science. Most recently, he has pioneered new research on user and adversarial behavioral modeling. He is an Associate Editor for the IEEE Transactions on Systems, Man, and Cybernetics: Part B and the International Journal of Image and Graphics. Scott DeLoach is currently an Associate Professor in the Department of Computing and Information Sciences at Kansas State University. His current research interests include autonomous cooperative robotics, adaptive multiagent systems, and agent-oriented software engineering. Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the US Air Force, with his last assignment being as an Assistant Professor of Computer Science and Engineering at the Air Force Institute of Technology. Dr. DeLoach received his BS in Computer Engineering from Iowa State University in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of Technology in 1987 and 1996. Michael T. Cox is a senior scientist in the Intelligent Distributing Computing Department of BBN Technologies, Cambridge, MA. Previous to this position, Dr. Cox was an assistant professor in the Department of Computer Science & Engineering at Wright State University, Dayton, Ohio, where he was the director of Wright State’s Collaboration and Cognition Laboratory. He received his Ph.D. in Computer Science from the Georgia Institute of Technology, Atlanta, in 1996 and his undergraduate from the same in 1986. From 1996 to 1998, he was a postdoctoral fellow in the Computer Science Department at Carnegie Mellon University in Pittsburgh working on the PRODIGY project. His research interests include case-based reasoning, collaborative mixed-initiative planning, intelligent agents, understanding (situation assessment), introspection, and learning. More specifically, he is interested in how goals interact with and influence these broader cognitive processes. His approach to research follows both artificial intelligence and cognitive science directions.  相似文献   

11.
This paper presents two types of nonlinear controllers for an autonomous quadrotor helicopter. One type, a feedback linearization controller involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. The second type involves a new approach to an adaptive sliding mode controller using input augmentation in order to account for the underactuated property of the helicopter, sensor noise, and uncertainty without using control inputs of large magnitude. The sliding mode controller performs very well under noisy conditions, and adaptation can effectively estimate uncertainty such as ground effects. Recommended by Editorial Board member Hyo-Choong Bang under the direction of Editor Hyun Seok Yang. This work was supported by the Korea Research Foundation Grant (MOEHRD) KRF-2005-204-D00002, the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) R0A-2007-000-10017-0 and Engineering Research Institute at Seoul National University. Daewon Lee received the B.S. degree in Mechanical and Aerospace Engineering from Seoul National University (SNU), Seoul, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical and Aerospace Engineering. He has been a member of the UAV research team at SNU since 2005. His research interests include applications of nonlinear control and vision-based control of UAV. H. Jin Kim received the B.S. degree from Korea Advanced Institute of Technology (KAIST) in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from University of California, Berkeley in 1999 and 2001, respectively. From 2002–2004, she was a Postdoctoral Researcher and Lecturer in Electrical Engineering and Computer Science (EECS), University of California, Berkeley (UC Berkeley). From 2004–2009, she was an Assistant Professor in the School of in Mechanical and Aerospace Engineering at Seoul National University (SNU), Seoul, Korea, where she is currently an Associate Professor. Her research interests include applications of nonlinear control theory and artificial intelligence for robotics, motion planning algorithms. Shankar Sastry received the B.Tech. degree from the Indian Institute of Technology, Bombay, in 1977, and the M.S. degree in EECS, the M.A. degree in mathematics, and the Ph.D. degree in EECS from UC Berkeley, in 1979, 1980, and 1981, respectively. He is currently Dean of the College of Engineering at UC Berkeley. He was formerly the Director of the Center for Information Technology Research in the Interest of Society (CITRIS). He served as Chair of the EECS Department from January, 2001 through June 2004. In 2000, he served as Director of the Information Technology Office at DARPA. From 1996 to 1999, he was the Director of the Electronics Research Laboratory at Berkeley (an organized research unit on the Berkeley campus conducting research in computer sciences and all aspects of electrical engineering). He is the NEC Distinguished Professor of Electrical Engineering and Computer Sciences and holds faculty appointments in the Departments of Bioengineering, EECS and Mechanical Engineering. Prior to joining the EECS faculty in 1983 he was a Professor with the Massachusetts Institute of Technology (MIT), Cambridge. He is a member of the National Academy of Engineering and Fellow of the IEEE.  相似文献   

12.
Grammar-based parsing is a prevalent method for natural language understanding(NLU)and has been introduced into dialogue systems for spoken language processing (SLP).A robust parsing scheme is proposed in this paper to overcome the notorious phenomena,such as garbage,ellipsis,word disordering,fragment ,and ill-form,which frequently occur in splien utterances,Keyword categories are used as terminal symbols,and the definition of grammar is extended by introducing three new rule types,by-passing,up-messing and overcrossing,in addition to the general rules called up-tying in this paper,and the use of semantic items simplifies the semantics extraction.The corresponding parser marionette,which is essentially a partial chart parser,is enhanced to parse the semantic grammar.The robust parsing scheme integrating the above methods has been adopted in an air traveling information service system called EasyFlight,and has achieved a high performance when used for parsing spontaneous speeches.  相似文献   

13.
Bounded Slice-line Grid (BSG) is an elegant representation of block placement, because it is very intuitionistic and has the advantage of handling various placement constraints. However, BSG has attracted little attention because its evaluation is very time-consuming. This paper proposes a simple algorithm independent of the BSG size to evaluate the BSG representation in O(nloglogn) time, where n is the number of blocks. In the algorithm, the BSG-rooms are assigned with integral coordinates firstly, and then a linear sorting algorithm is applied on the BSG-rooms where blocks are assigned to compute two block sequences, from which the block placement can be obtained in O(n log logn) time. As a consequence, the evaluation of the BSG is completed in O(nloglogn) time, where n is the number of blocks. The proposed algorithm is much faster than the previous graph-based O(n^2) algorithm. The experimental results demonstrate the efficiency of the algorithm.  相似文献   

14.
This paper investigates the problem of global robust stabilization for a wide class of nonlinear systems, called polynomial lower-triangular form (pLTF), which expands LTF to a more general case. The aim is explicitly constructing the smooth controller for the class of systems with static uncertainties, by adding and modifying a power integrator in a recursive manner. The pLTF relaxes the restrictions on the structure of the normal LTF and enlarges the family of systems that are stabilizable. Examples are also provided to show the practical usage of this class of systems and the effectiveness of the design method. Recommended by Editorial Board member Hyungbo Shim under the direction of Editor Jae Weon Choi. Bing Wang received the B.S. degree from the Huazhong University of Science and Technology, and the Ph.D. degree from the University of Science and Technology of China, in 1998 and 2006, respectively. He is currently working in College of Electrical Engineering, Hohai University. His research interests include robust control, nonlinear control and power systems. Haibo Ji received the B.S. and Ph.D. degrees in Mechanical Engineering from ZheJiang University and Beijing University in 1984 and 1990 respectively. He is currently a Professor in the Dept. of Automation, USTC. His research interests include nonlinear control and adaptive control. Jin Zhu received the B.S. and Ph.D. degrees in Control Science and Engineering from University of Science & Technology of Chinain 2001 and 2006 respectively. He is currently a Post-doc in Han-Yang University, Korea. His research interests include Markovian jump systems and nonlinear control.  相似文献   

15.
A Type of Triangular Ball Surface and its Properties   总被引:1,自引:0,他引:1       下载免费PDF全文
A new type of bivariate generalized Ball basis function on a triangle is presented for free-form surface design.Some properties of the basis function are given,then degree elevation,recursive evaluation and some other properties of the generalized Ball surfaces are also derived.It is shown that the proposed recursive evaluation algorithm is more efficient than those of the old surfaces.  相似文献   

16.
In instance-based learning, the ‘nearness’ between two instances—used for pattern classification—is generally determined by some similarity functions, such as the Euclidean or Value Difference Metric (VDM). However, Euclidean-like similarity functions are normally only suitable for domains with numeric attributes. The VDM metrics are mainly applicable to domains with symbolic attributes, and their complexity increases with the number of classes in a specific application domain. This paper proposes an instance-based learning approach to alleviate these shortcomings. Grey relational analysis is used to precisely describe the entire relational structure of all instances in a specific domain. By using the grey relational structure, new instances can be classified with high accuracy. Moreover, the total number of classes in a specific domain does not affect the complexity of the proposed approach. Forty classification problems are used for performance comparison. Experimental results show that the proposed approach yields higher performance over other methods that adopt one of the above similarity functions or both. Meanwhile, the proposed method can yield higher performance, compared to some other classification algorithms. Chi-Chun Huang is currently Assistant Professor in the Department of Information Management at National Kaohsiung Marine University, Kaohsiung, Taiwan. He received the Ph.D. degree from the Department of Electronic Engineering at National Taiwan University of Science and Technology in 2003. His research includes intelligent Internet systems, grey theory, machine learning, neural networks and pattern recognition. Hahn-Ming Lee is currently Professor in the Department of Computer Science and Information Engineering at National Taiwan University of Science and Technology, Taipei, Taiwan. He received the B.S. degree and Ph.D. degree from the Department of Computer Science and Information Engineering at National Taiwan University in 1984 and 1991, respectively. His research interests include, intelligent Internet systems, fuzzy computing, neural networks and machine learning. He is a member of IEEE, TAAI, CFSA and IICM.  相似文献   

17.
A humanoid robot is always flooded by sensed information when sensing the environment, and it usually needs significant time to compute and process the sensed information. In this paper, a selective attention-based contextual perception approach was proposed for humanoid robots to sense the environment with high efficiency. First, the connotation of attention window (AW) is extended to make a more general and abstract definition of AW, and its four kinds of operations and state transformations are also discussed. Second, the attention control policies are described, which integrate intensionguided perceptual objects selection and distractor inhibition, and can deal with emergent issues. Distractor inhibition is used to filter unrelated information. Last, attention policies are viewed as the robot’s perceptual modes, which can control and adjust the perception efficiency. The experimental results show that the presented approach can promote the perceptual efficiency significantly, and the perceptual cost can be effectively controlled through adopting different attention policies.  相似文献   

18.
This paper is concerned with the problem of delay-dependent robust H control for uncertain fuzzy Markovian jump systems with time delays. The purpose is to design a mode-dependent state-feedback fuzzy controller such that the closed-loop system is robustly stochastically stable and satisfies an H performance level. By introducing slack matrix variables, a delay-dependent sufficient condition for the solvability of the problem is proposed in terms of linear matrix inequalities. An illustrative example is finally given to show the applicability and effectiveness of the proposed method. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Jae Weon Choi. This work is supported by the National Science Foundation for Distinguished Young Scholars of P. R. China under Grant 60625303, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20060288021, and the Natural Science Foundation of Jiangsu Province under Grant BK2008047. Yashun Zhang received the B.S. and M.S. degrees in Control Science and Control Engineering from Hefei University of Science and Technology in 2003 and 2006. He is currently a Ph.D. student in Control Science and Control Engineering, Nanjing University of Science and Technology. His research interests include fuzzy control, sliding mode control and nonlinear control. Shengyuan Xu received the Ph.D. degree in Control Science and Control Engineering from Nanjing University of Science and Technology in 1999. His research interests include robust filtering and control, singular systems, time-delay systems and nonlinear systems. Jihui Zhang is a Professor in the School of Automation Engineering of Qingdao University, China. His main areas of interest are discrete event dynamic systems, production planning and control, and operations research.  相似文献   

19.
This paper defines second-order and third-order permutation global functions and presents the corresponding higher-order cellular automaton approach to the hyper-parallel undistorted data compression.The genetic algorithm is successfully devoted to finding out all the correct local compression rules for the higher-order cellualr automaton.The correctness of the higher-order compression rules,the time complexity,and the systolic hardware implementation issue are discussed.In comparison with the first-order automation method reported,the proposed higher-order approach has much faster compression speed with almost the same degree of cellular structure complexity for hardware implementation.  相似文献   

20.
We study the relationships between a number of behavioural notions that have arisen in the theory of distributed computing. In order to sharpen the under-standing of these relationships we apply the chosen behavioural notions to a basic net-theoretic model of distributed systems called elementary net systems. The behavioural notions that are considered here are trace languages, non-sequential processes, unfoldings and event structures. The relationships between these notions are brought out in the process of establishing that for each elementary net system, the trace language representation of its behaviour agrees in a strong way with the event structure representation of its behaviour. M. Nielsen received a Master of Science degree in mathematics and computer science in 1973, and a Ph.D. degree in computer science in 1976 both from Aarhus University, Denmark. He has held academic positions at Department of Computer Science, Aarhus University, Denmark since 1976, and was visiting researcher at Computer Science Department, University of Edinburgh, U.K., 1977–79, and Computer Laboratory, Cambridge University, U.K., 1986. His research interest is in the theory of distributed computing. Grzegorz Rozenberg received a master of engineering degree from the Department of Electronics (section computers) of the Technical University of Warsaw in 1964 and a Ph.D. in mathematics from the Institute of Mathematics of the Polish Academy of Science in 1968. He has held acdeemic positions at the Institute of Mathematics of the Polish Academy of Science, the Department of Mathematics of Utrecht University, the Department of Computer Science at SUNY at Buffalo, and the Department of Mathematics of the University of Antwerp. He is currently Professor at the Department of Computer Science of Leiden University and Adjoint Professor at the Department of Computer Science of the University of Colorado at Boulder. His research interests include formal languages and automata theory, theory of graph transformations, and theory of concurrent systems. He is currently President of the European Association for Theoretical Computer Science (EATCS). P.S. Thiagarajan received the Bachelor of Technology degree from the Indian Institute of Technology, Madras, India in 1970. He was awarded the Ph.D. degree by Rice University, Houston Texas, U.S.A, in 1973. He has been a Research Associate at the Massachusetts Institute of Technology, Cambridge a Staff Scientist at the Geosellschaft für Mathematik und Datenverarbeitung, St. Augustin, a Lektor at Århus University, Århus and an Associate Professor at the Institute of Mathematical Sciences, Madras. He is currently a Professor at the School of Mathematics, SPIC Science Foundation, Madras. He research intest is in the theory of distributed computing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号