共查询到20条相似文献,搜索用时 62 毫秒
1.
随着人工智能、5G、激光雷达和各类传感器等技术的不断发展与应用,无人驾驶、车联网等应运而生,汽车朝着智能化和网联化不断发展,为人们带来舒适、安全的驾驶体验。同时,网联化也打破了汽车现有的闭环状态,为车载电子系统带来了潜在的信息安全问题。为此,文章提出了基于支持向量机的车载网络入侵检测算法。通过对报文的DATA域的分析,挖掘报文的各字节特点,综合各字节和字节数据的信息熵,构成分类训练样本,训练支持向量模型,以此检测数据的可能异常。通过真实车辆数据实验分析,对模拟攻击的异常检测具有较高的检测率。 相似文献
2.
支持向量机(SVM)是一类新型机器学习方法,首先简要介绍了SVM的基本原理,进而分析了该方法应用于异常检测,最后对基于支持向量机(SVM)的异常检测在路由器中的实现方法进行了简要论述和仿真实验。 相似文献
3.
一种基于一类支持向量机的时序异常检测算法 总被引:1,自引:0,他引:1
提出一种基于一类支持向量机的时序异常检测算法。该算法通过投影相空间重构法将时序数据转换为向量,构造数据依赖的核函数来优化SVM对多噪声非线性时序数据的处理,最后用一类支持向量机进行异常检测。 相似文献
4.
给出了一种基于免疫算法及层次支持向量机的人脸识别方法,该方法先利用Gabor小泼变换提取待识别的人脸图像的特征向量,然后利用层次支持向量机初步判断该图像最可能所属的人,最后利用免疫算法对待识别的人脸图像进行确认.实验表明,该算法效果较佳. 相似文献
5.
6.
针对标准支持向量机方法需要存储、计算和处理核矩阵而学习效率很低,不能有效处理较大规模数据挖掘的问题,提出一种基于近邻边缘检测的支持向量机方法 (SVM Method Based on Neighbor Edge Detection, ED_SVM)。该方法将近邻边缘检测技术引入SVM的训练过程,即首先对数据进行划分,选择混合类样本,通过边缘检测技术提取其中位于近似最优分类边界附近的含有较多重要支持向量信息的样本,构成新的小规模训练集,以在压缩训练集的同时保持原始支持向量信息的分布特性;并在新构成的训练集上训练标准SVM,在提高SVM学习效率的同时得到优秀的泛化性能。实验结果表明,本文提出的ED_SVM方法能够同时获得较高的测试精度和学习效率。 相似文献
7.
支持向量机性能很大程度上依赖于其参数,为了确定最优参数,往往需要估计所建模型的泛化能力。本文详细介绍了目前国外支持向量机的各种泛化能力估计方法,分析了各种泛化能力估计方法的特点及其关系,并指出了今后的发展方向。 相似文献
8.
9.
10.
针对异常检测系统虚警率高、检测率低以及冗余特征对检测系统造成负担的问题,提出一种基于特征选择和支持向量机相结合的异常检测方法.该方法通过构造一种基于分类模型分类准确率计算的特征选择算法,筛选出能够获得分类准确率最高的特征组合,并与支持向量机分类算法相结合,实现数据的异常检测.仿真测试结果表明,该方法具有较高的检测准确率和较低的检测时间,并通过去除噪声特征,降低了系统的数据处理难度. 相似文献
11.
支持向量机中参数设置对训练支持向量机分类的精确度有不可忽视的影响。支持向量机参数的选取可看作参数的组合优化。免疫算法是一种有效的随机全局优化技术,它具有不易陷入局部最优解、解精度高、收敛速度快等优点。该文利用人工免疫算法进行支持向量机模型选择。该算法主要包括克隆选择、高频变异、受体编辑等操作。试验证明,该算法能够有效提高支持向量机分类的正确性。 相似文献
12.
在无向加权图上进行距离检索和对象查询是使用无向加权图的重要工作,也是解决实际问题的重要步骤。该文提出一种基于距离签名的处理方法来实现距离检索和查询,通过距离分级、签名编码和压缩等,实现了检索和查询的高效率,减少了存储空间。描述了建模及处理KNN查询的过程,实验证明了该方法的有效性。 相似文献
13.
14.
指出Keerthi的SMO算法存在的问题。该算法由于采用“取中法”求偏置,在优化条件不满足的情况下,偏置值有可能出现偏差,从而劣化SVM的建模性能。该文从SVM回归的原问题出发,导出求偏置的新方法并将其归结为一维凸函数最优化问题,将新算法应用于高斯函数的回归和记忆非线性功率放大器的预失真器的建模中,结果显示了新算法的正确性和有效性,建模精度提高10%左右。 相似文献
15.
基于可变模板和支持向量机的人体检测 总被引:1,自引:0,他引:1
随着图像处理技术和模式识别技术的发展,人体检测在监控系统、驾驶员辅助系统、图像索引等领域已得到广泛应用。针对静态图像中站姿人体检测问题,提出了一种新的特征选取方法,并应用可变模板和支持向量机相结实现对图像中的人体检测和定位。通过对图像进行轮廓提取和网格划分,选择水平方向和垂直方向上的特征组成图像的特征向量,然后使用搜集到的样本特征向量对模型进行训练,用可变模板搜索待检测图像,根据检测区域的特征和训练好的模型对图像进行分类。实验结果表明,该方法可以快速准确地检测出多种背景图像中的站姿人体,正确分类率达92%以上。 相似文献
16.
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。 相似文献
17.
支持向量机(SVM)方法是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。因此标准的SVM方法需要求解二次规划问题,计算量很大。该文以一个医学决策支持系统为应用背景,介绍一种解决该问题的新方法。在UCI数据集和所开发的决策支持系统上的应用表明,该算法简便可行,具有更高的精度和更快的速度。 相似文献
18.
为提高异常入侵检测的效率,提出一种混合偏最小二乘特征提取和核心向量机算法的入侵检测模型。模型使用偏最小二乘算法在入侵数据集上进行主成分提取,在此基础上构建特征集,引入适用于解决大规模样本训练问题的核心向量机算法,在特征集上建立入侵检测模型,使用该模型对异常入侵行为进行检测和判断。通过基于KDD99数据集上的入侵检测实验,验证了混合模型的可行性和有效性。 相似文献
19.
在对两种SVM学习算法(SMO和SVMlight)进行分析的基础上,提出了一种改进的基于集合划分和SMO的算法SDBSMO。该算法根据样本违背最优化条件的厉害程度将训练集划分为多个集合,每次迭代后利用集合信息快速更新工作集和相关参数,从而减少迭代开销,提高训练速度。实验结果表明该算法能很好地提高支持向量机的训练速度。 相似文献