首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 109 毫秒

1.  一种改进的支持向量机的文本分类算法  被引次数:15
   巩知乐  张德贤  胡明明《计算机仿真》,2009年第26卷第7期
   在文本分类中,应用支持向量机(SVM)算法能使分类在小样本的条件下具有良好的泛化能力.但支持向量机的参数取值决定了其学习性能和泛化能力.为提高支持向量机算法的性能,提出了一种采用免疫算法对支持向量机参数进行优化的文本分类算法(IA-SVM).算法减少了对支持向量机参数选择的盲目性,提高了SVM的预测精度.实验表明,IA-SVM算法在文本分类问题上明显提高了分类正确牢,学习速度也有提高.    

2.  基于免疫优化多分类SVM的变压器故障诊断新方法  被引次数:1
   韩富春  高文军  廉建鑫  杨洁《继电器》,2012年第40卷第2期
   针对支持向量机中参数设置对支持向量机分类精确度影响较大及传统支持向量机不能直接用于多分类问题的状况,提出了一种基于免疫优化多分类支持向量机的变压器故障诊断新方法,该方法利用免疫算法优化支持向量机分类参数。以一类分类算法为基础建立多分类算法模型,在高维特征空间求出超球体中心,然后计算样本与中心最小距离,以此判定该点所属故障类型。该算法充分发挥了支持向量机高泛化能力的优势,大大减少了对支持向量机参数选择的盲目性。仿真计算结果表明,在有限样本情况下,该方法能够达到较高的变压器故障诊断率,从而证实了该方法的正确性和有效性。    

3.  一种分布式智能推荐系统的设计  
   陶剑文《计算机工程》,2007年第33卷第15期
   为提高支持向量回归算法的学习能力和泛化性能,提出了一种优化支持向量回归参数的混合选择算法.根据训练样本的规模和噪声水平等信息,确定支持向量回归参数的取值范围,用实数编码的免疫遗传算法搜索最佳参数值.混合选择算法具有较高的精度和效率,在选择支持向量回归参数时,不必考虑模型的复杂度和变量维数.仿真实验结果表明,该算法是选择支持向量回归参数的有效方法,应用到函数逼近问题时具有优良的性能.    

4.  支持向量回归参数的混合选择  
   王强  陈英武  邢立宁《计算机工程》,2007年第33卷第15期
   为提高支持向量回归算法的学习能力和泛化性能,提出了一种优化支持向量回归参数的混合选择算法。根据训练样本的规模和噪声水平等信息,确定支持向量回归参数的取值范围,用实数编码的免疫遗传算法搜索最佳参数值。混合选择算法具有较高的精度和效率,在选择支持向量回归参数时,不必考虑模型的复杂度和变量维数。仿真实验结果表明,该算法是选择支持向量回归参数的有效方法,应用到函数逼近问题时具有优良的性能。    

5.  基于免疫算法优化最小二乘支持向量机的压器故障诊断  
   郭泽民《机械管理开发》,2012年第2期
   由于支持向量机中的参数会显著影响着支持向量机分类的精确度,建立了一种基于免疫算法优化最小二乘支持向量机的电力变压器故障诊断模型;该模型以变压器油中主要溶解气体作为向量机的输入,以变压器故障类型作为其相应的输出,选用径向基核、使用免疫算法得到优化参数,充分发挥向量机较高泛化能力的优势.实例验证表明,这种方法能提高变压器的故障诊断准确率,反映了其有效性和正确性.    

6.  一类基于支持向量机的软件故障预测方法  被引次数:2
   张艳  任子晖《小型微型计算机系统》,2010年第31卷第7期
   针对基于神经网络的计算机软件故障预测方法中存在的过学习和泛化能力差的问题,提出一种基于支持向量机(SVM)的软件故障预测方法.该方法应用具有强大非线性逼近能力与优秀泛化能力的支持向量机对软件故障因子与软件隐藏故障数之间的非线性关系进行拟合.采用经典粒子群优化算法(CPSO),在测试样本集均方根误差(RMSE)与平均绝对百分比误差(MAPE)同时最小时,选择和优化支持向量机的参数向量.计算机测控软件故障预测实验验证了该方法的可行性和可靠性.    

7.  一种基于支持向量机的入侵检测模型  被引次数:3
   许劲松  覃俊《计算机仿真》,2005年第22卷第5期
   支持向量机(support vector machines)是一种建立在统计学习理论基础之上的机器学习方法。基于支持向量机在处理小样本、高维数及泛化能力强等方面的优势,该文提出了一种根据结构风险最小化原则基于支持向量机的入侵检测系统,首先简单介绍了入侵检测系统近来的发展状况和支持向量机的分类算法,然后给出以支持向量机分类算法为基础的入侵检测模型,以系统调用执行迹进行仿真实验,详细讨论了该模型的工作过程及核函数参数的选取对检测性能的影响。实验表明,该模型在先验知识较小的情况下,能够较好的检测出异常的入侵调用。    

8.  基于免疫支持向量机方法的电力系统短期负荷预测  被引次数:13
   吴宏晓  侯志俭《电网技术》,2004年第28卷第23期
   在对支持向量机(Support Vector Machines,SVM)方法的参数性能进行分析的基础上,提出了一种免疫支持向量机方法来预测电力系统短期负荷,其中利用免疫算法来优化支持向量机方法的参数.免疫算法是根据人类或其它高等动物免疫系统的机理而设计的,通过仿真抗原和抗体之间的相互作用过程,有效地克服了未成熟收敛现象,提高了群体的多样性.电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,本文所提免疫支持向量机方法具有更高的预测精度.    

9.  基于改进遗传算法的支持向量机参数优化  被引次数:1
   刘东平  单甘霖  张岐龙  段修生《微计算机应用》,2010年第31卷第5期
   支持向量机是一种非常有前景的学习机器,但是,支持向量机参数的选取一直没有一套成熟的理论,这给支持向量机的应用带来了很大的不便.为此,本文提出了基于改进遗传算法的支持向量机的参数优化方法,利用遗传算法的全局搜索能力得到支持向量机的最优参数值.仿真实验结果表明,得到的参数可使支持向量机具有良好的泛化性能,此方法切实有效.    

10.  基于优化SVM的高速公路交通事件检测  
   沈舒  吴聪  李勃  陈启美《电子测量技术》,2012年第35卷第5期
   为了降低交通事件对高速公路交通运行的影响,提出一种基于视频交通流参数的支持向量机交通事件检测算法。针对线圈检测器在车辆拥堵时的检测精度大幅降低,甚至无法检测等不足,采用基于视频的交通流参数检测方法。通过安装的视频摄像机,实现对高速公路全程的无盲区交通事件检测。同时,为了解决支持向量机模型参数的大小对分类器泛化能力的不利影响,采用改进的网格搜索算法对模型参数进行优化选择。应用实际采集的交通流数据,对优化的支持向量机事件检测算法进行验证,并与遗传算法、粒子群算法的优化结果进行比较。实验结果表明,提出的方法具有最高的检测率和较低的误报警率,且优化时间短,满足了交通事件检测实时性的要求。    

11.  基于混合遗传算法的支持向量机参数选择  
   颜根廷  李传江  马广富《哈尔滨工业大学学报》,2008年第40卷第5期
   针对常用的梯度下降法支持向量机参数选择方法易陷入局部极小点的问题,提出一种基于混合遗传算法的支持向量机参数选择方法.该方法结合遗传算法的全局优化能力和梯度法的局部寻优能力,能够选择到更好的支持向量机参数.仿真实验表明,使用该方法确定的参数可使支持向量机具有更好的泛化性能.    

12.  基于KPCA空间相似度的一类入侵检测方法  
   徐晶  陶新民《计算机应用》,2009年第29卷第9期
   为了解决入侵检测系统中异常样本数据不易收集以及异常样本数据分布不均导致传统分类算法出现过适应现象等现实应用问题,提出了一种基于核主成分分析(KPCA)空间相似度的一类入侵检测方法.该方法利用KPCA形成正常样本的非线性特征子空间,其他样本在该空间的投影系数作为相似性的度量.同时,为了有效利用已有的异常训练样本,通过自适应增加免疫因子方法来提高模型的决策性能及增量学习能力.对核函数参数和阈值设定进行了分析,并给出基于粒子群优化算法的决策模型.实验中将该方法同其他多层感知机(MLP),支持向量机(SVM)及自组织映射(SOM)方法进行比较,实验结果验证了该方法的正确性和有效性.    

13.  特征选择和支持向量回归参数的联合优化  
   王强 陈英武 邢立宁《计算机工程与应用》,2007年第43卷第14期
   为提高支持向量回归算法的学习能力和泛化性能,提出了特征选择和支持向量回归参数的联合优化方法。联合优化方法采用主成分分析产生新的特征集,以方均误差为目标计算回归精度,并应用实数编码的免疫遗传算法求解此优化问题。仿真实验结果表明,联合优化的回归精度要优于单独优化特征和支持向量回归参数,而且优化速度更快。    

14.  基于SVM的人脸检测研究  
   胡萍萍《电脑编程技巧与维护》,2011年第1卷第16期
   支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的机器学习算法。依据SVM良好识别和泛化能力,实现了一种基于支持向量机的图像人脸识别方法。利用Opencv提取样本类的低层特征,训练具有径向基核函数的SVM分类器,在VS2008和Qt平台下实现识别软件开发。运行结果表明,软件具有良好的图像人脸检测能力。    

15.  基于改进的蛙跳算法与支持向量机的实用语音情感识别  
   张潇丹  胡峰  赵力《信号处理》,2011年第27卷第5期
   支持向量机是一种基于统计学习理论的新型机器学习算法,在高维特征空间中寻找最优分类超平面,具有很好的分类精度和泛化性能.支持向量机的训练需要求解一个带约束的二次规划问题,针对数据规模很大情况下经典训练方法变得很困难的缺点,提出一种基于改进混合蛙跳算法的支持向量机分类器参数优化方法,既提高了混合蛙跳算法的收敛速度和精度,又能借助混合蛙跳算法的全局随机搜索能力,为支持向量机参数的优化选择提供一条有效途径.本文提取情感语句的韵律特征、音质特征和混沌特征参数,提出一种基于改进蛙跳算法的数据融合方法,并利用基于改进蛙跳算法的支持向量机进行实用语音情感的识别研究.在实验中比较了PCA方法、BP神经网络和数据融合方法用于语音情感识别的识别率,研究结果表明本文所提的各项改进机制能有效提升情感识别率,为实用语音情感的识别提供一种新方法和新思路.    

16.  基于最大间隔超球分类器的柴油机异常检测研究  
   吴定海  张培林  任国全  傅建平《兵工学报》,2011年第32卷第7期
   针对柴油机等机械故障检测中存在数据样本分布不平衡的问题,提出了一种最大间隔分离超球面的柴油机异常检测方法。分析了支持向量描述模型存在泛化能力差的缺点,结合最优分类超平面的优点,引入分离比例参数和异常类样本信息来权衡超球的描述精度和泛化性能,提出了运用支持向量个数和接受者操作特性(ROC)曲线下面积作为分类器性能评价指标的模型参数分步优化方法。柴油机实测信号异常检测结果验证了本文方法的优越性和良好应用前景。    

17.  量子粒子群和最小二乘支持向量机相结合的网络异常检测  
   姚晔《微电子学与计算机》,2012年第29卷第3期
   为了提高网络安全性的异常入侵检测的准确率,提出一种量子粒子群算法(QPSO)优化最小二乘支持向量机(LSSVC)的网络异常检测方法(QPSO-LSSVC).首先利用量子粒子群处算法对LSSVC模型参数进行搜索,选出最优参数,然后采用泛化性能力优异的LSSVC对网络入侵进行建模和检测.选取KDDCUP99数据对QPSO-LSSVC性能进行测试,实验结果表明,QPSO-LSSVC提高了网络异常检测准确率,降低了误报率,为网络安全提供了有效保证.    

18.  基于离散微粒群优化算法的SVM参数选择  
   马驰  阮秋琦《计算机技术与发展》,2007年第17卷第12期
   支持向量机(SVM)的学习性能和泛化能力主要取决于参数选择,然而传统的优化算法难以解决此问题。文中通过支持向量的个数建立优化目标函数,采用微粒群优化(PSO)算法对其优化,寻找最优参数。PSO是一种新兴的基于群体智慧的进化算法。实验表明,微粒群优化算法是支持向量机参数选择的有效方法。    

19.  基于离散微粒群优化算法的SVM参数选择  
   马驰  阮秋琦《微机发展》,2007年第17卷第12期
   支持向量机(SVM)的学习性能和泛化能力主要取决于参数选择,然而传统的优化算法难以解决此问题。文中通过支持向量的个数建立优化目标函数,采用微粒群优化(PSO)算法对其优化,寻找最优参数。PSO是一种新兴的基于群体智慧的进化算法。实验表明,微粒群优化算法是支持向量机参数选择的有效方法。    

20.  支持向量机在网络异常入侵检测中的应用研究  
   郭成芳《计算机仿真》,2011年第28卷第7期
   研究网络安全问题,针对对网络异常入侵检测数据的特征进行提取,用传统异常入侵检测算法存在小样本情况下训练精度高,预测精度低的过拟合缺陷,出现误报和漏报现象,提出一种基于支持向量机的网络异常入侵检测方法.在支持向量机的网络异常入侵检测过程中,利用网格法寻找支持向量机最优参数,并找到的最优参数对网络异常入侵训练样本进行训练学习,得到最优异常入侵检测模型,对入侵检测数据进行预测.以网络异常入侵标准数据库DARPA中的数据集进行了仿真.仿真结果表明,小样本数据的支持向量机有较高的网络入侵检测准确率,具有较好的实时性,是一种高效、误报和漏报率低的网络异常入侵检测方法.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号