首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Efficient algorithms for optimistic crash recovery   总被引:1,自引:0,他引:1  
Summary Recovery from transient processor failures can be achieved by using optimistic message logging and checkpointing. The faulty processorsroll back, and some/all of the non-faulty processors also may have to roll back. This paper formulates the rollback problem as a closure problem. A centralized closure algorithm is presented together with two efficient distributed implementations. Several related problems are also considered and distributed algorithms are presented for solving them. S. Venkatesan received the B. Tech. and M. Tech degrees from the Indian Institute of Technology, Madras in 1981 and 1983, respectively and the M.S. and Ph.D. degrees in Computer Science from the University of Pittsburgh in 1985 and 1988. He joined the University of Texas at Dallas in January 1989, where he is currently an Assistant Professor of Computer Science. His research interests are in fault-tolerant distributed systems, distributed algorithms, testing and debugging distributed programs, fault-tolerant telecommunication networks, and mobile computing. Tony Tony-Ying Juang is an Associate Professor of Computer Science at the Chung-Hwa Polytechnic Institute. He received the B.S. degree in Naval Architecture from the National Taiwan University in 1983 and his M.S. and Ph.D. degrees in Computer Science from the University of Texas at Dallas in 1989 and 1992, respectively. His research interests include distributed algorithms, fault-tolerant distributed computing, distributed operating systems and computer communications.This research was supported in part by NSF under Grant No. CCR-9110177 and by the Texas Advanced Technology Program under Grant No. 9741-036  相似文献   

2.
This paper describes a novel method for tracking complex non-rigid motions by learning the intrinsic object structure. The approach builds on and extends the studies on non-linear dimensionality reduction for object representation, object dynamics modeling and particle filter style tracking. First, the dimensionality reduction and density estimation algorithm is derived for unsupervised learning of object intrinsic representation, and the obtained non-rigid part of object state reduces even to 2-3 dimensions. Secondly the dynamical model is derived and trained based on this intrinsic representation. Thirdly the learned intrinsic object structure is integrated into a particle filter style tracker. It is shown that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle filter style tracker more robust and reliable.Extensive experiments are done on the tracking of challenging non-rigid motions such as fish twisting with selfocclusion, large inter-frame lip motion and facial expressions with global head rotation. Quantitative results are given to make comparisons between the newly proposed tracker and the existing tracker. The proposed method also has the potential to solve other type of tracking problems.  相似文献   

3.
Traditional filtering theory is always based on optimization of the expected value of a suitably chosen function of error, such as the minimum mean-square error (MMSE) criterion, the minimum error entropy (MEE) criterion, and so on. None of those criteria could capture all the probabilistic information about the error distribution. In this work, we propose a novel approach to shape the probability density function (PDF) of the errors in adaptive filtering. As the PDF contains all the probabilistic information, the proposed approach can be used to obtain the desired variance or entropy, and is expected to be useful in the complex signal processing and learning systems. In our method, the information divergence between the actual errors and the desired errors is chosen as the cost function, which is estimated by kernel approach. Some important properties of the estimated divergence are presented. Also, for the finite impulse response (FIR) filter, a stochastic gradient algorithm is derived. Finally, simulation examples illustrate the effectiveness of this algorithm in adaptive system training. Recommended by Editorial Board member Naira Hovakimyan under the direction of Editor Jae Weon Choi. This work was supported in part by the National Natural Science Foundation of China under grants 50577037 and 60604010. Badong Chen received the B.S. and M.S. degrees in Control Theory and Engineering from Chongqing University, Chongqing, China, in 1997 and 2003, respectively, and the Ph.D. degree in Computer Science and Technology from Tsinghua University, Beijing China, in 2008. He is currently a Postdoctor of the Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, China. His research interests are in signal processing, adaptive control, and information theoretic aspects of control systems. Yu Zhu received the B.S. of Radio Electronics in 1983 at Beijing Normal University, and the M.S. of Computer Applications in 1993, and the Ph.D. of Mechanical Design and Theory in 2001 at China University of Mining & Technology. He is now a Professor of the Institute of Manufacturing Engineering of Department of Precision and Mechanology of Tsinghua University. His current research interests are parallel machanism and theory, two photon micro-fabrication, ultra-precision motion system and motion control. Jinchun Hu received the Ph.D. in Control Science and Engineering from Nanjing University of Science and Technology, Nanjing, China, in 1998. Since then, he has been a postdoctoral researcher in Nanjing University of Aeronautics and Astronautics in 1999 and Tsinghua University in 2002 respectively. His research interests are in flight control, aerial Robot and intelligent control. Dr. Hu is currently an Associate Professor of the Department of Computer Science and Technology of Tsinghua University, Beijing, China. Zengqi Sun received the B.S. degree from the Department of Automatic Control, Tsinghua University, Beijing, China, in 1966 and the Ph.D. degree in Control Engineering from the Chalmas University of Technology, Sweden, in 1981. He is currently a Professor of the Department of Computer Science and Technology, Tsinghua University, Beijing, China. He is the author or coauthor of more than 100 paper and eight books on control and robotics. His research interests include robotics, intelligent control, fuzzy system, neural networks, and evolutionary computation.  相似文献   

4.
With the growing popularity of the World Wide Web, large volume of user access data has been gathered automatically by Web servers and stored in Web logs. Discovering and understanding user behavior patterns from log files can provide Web personalized recommendation services. In this paper, a novel clustering method is presented for log files called Clustering large Weblog based on Key Path Model (CWKPM), which is based on user browsing key path model, to get user behavior profiles. Compared with the previous Boolean model, key path model considers the major features of users‘ accessing to the Web: ordinal, contiguous and duplicate. Moreover, for clustering, it has fewer dimensions. The analysis and experiments show that CWKPM is an efficient and effective approach for clustering large and high-dimension Web logs.  相似文献   

5.
Bounded Slice-line Grid (BSG) is an elegant representation of block placement, because it is very intuitionistic and has the advantage of handling various placement constraints. However, BSG has attracted little attention because its evaluation is very time-consuming. This paper proposes a simple algorithm independent of the BSG size to evaluate the BSG representation in O(nloglogn) time, where n is the number of blocks. In the algorithm, the BSG-rooms are assigned with integral coordinates firstly, and then a linear sorting algorithm is applied on the BSG-rooms where blocks are assigned to compute two block sequences, from which the block placement can be obtained in O(n log logn) time. As a consequence, the evaluation of the BSG is completed in O(nloglogn) time, where n is the number of blocks. The proposed algorithm is much faster than the previous graph-based O(n^2) algorithm. The experimental results demonstrate the efficiency of the algorithm.  相似文献   

6.
A Novel Computer Architecture to Prevent Destruction by Viruses   总被引:1,自引:0,他引:1       下载免费PDF全文
In today‘s Internet computing world,illegal activities by crackers pose a serious threat to computer security.It is well known that computer viruses,Trojan horses and other intrusive programs may cause sever and often catastrophic consequences. This paper proposes a novel secure computer architecture based on security-code.Every instruction/data word is added with a security-code denoting its security level.External programs and data are automatically addoed with security-code by hadware when entering a computer system.Instruction with lower security-code cannot run or process instruction/data with higher security level.Security-code cannot be modified by normal instruction.With minor hardware overhead,then new architecture can effectively protect the main computer system from destruction or theft by intrusive programs such as computer viruses.For most PC systems it includes an increase of word-length by 1 bit on register,the memory and the hard disk.  相似文献   

7.
Mining frequent patterns from datasets is one of the key success of data mining research. Currently,most of the studies focus on the data sets in which the elements are independent, such as the items in the marketing basket. However, the objects in the real world often have close relationship with each other. How to extract frequent patterns from these relations is the objective of this paper. The authors use graphs to model the relations, and select a simple type for analysis. Combining the graph theory and algorithms to generate frequent patterns, a new algorithm called Topology, which can mine these graphs efficiently, has been proposed.The performance of the algorithm is evaluated by doing experiments with synthetic datasets and real data. The experimental results show that Topology can do the job well. At the end of this paper, the potential improvement is mentioned.  相似文献   

8.
This paper proposes a formal approach to protocol performance testing based on the extended concurrent TTCN,To meet the needs of protocol performance testing,concurrent TTCN is extended,and the extended concurrent TTCN‘s operational semantics is defined in terms of Input-Output Labeled Transition System.An architecture design of protocol performance test system is described,and an example of test cases and its test result are given.  相似文献   

9.
This paper investigates the problem of global robust stabilization for a wide class of nonlinear systems, called polynomial lower-triangular form (pLTF), which expands LTF to a more general case. The aim is explicitly constructing the smooth controller for the class of systems with static uncertainties, by adding and modifying a power integrator in a recursive manner. The pLTF relaxes the restrictions on the structure of the normal LTF and enlarges the family of systems that are stabilizable. Examples are also provided to show the practical usage of this class of systems and the effectiveness of the design method. Recommended by Editorial Board member Hyungbo Shim under the direction of Editor Jae Weon Choi. Bing Wang received the B.S. degree from the Huazhong University of Science and Technology, and the Ph.D. degree from the University of Science and Technology of China, in 1998 and 2006, respectively. He is currently working in College of Electrical Engineering, Hohai University. His research interests include robust control, nonlinear control and power systems. Haibo Ji received the B.S. and Ph.D. degrees in Mechanical Engineering from ZheJiang University and Beijing University in 1984 and 1990 respectively. He is currently a Professor in the Dept. of Automation, USTC. His research interests include nonlinear control and adaptive control. Jin Zhu received the B.S. and Ph.D. degrees in Control Science and Engineering from University of Science & Technology of Chinain 2001 and 2006 respectively. He is currently a Post-doc in Han-Yang University, Korea. His research interests include Markovian jump systems and nonlinear control.  相似文献   

10.
An Algorithm Based on Tabu Search for Satisfiability Problem   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,a computationally effective algorithm based on tabu search for solving the satisfiability problem(TSSAT)is proposed.Some novel and efficient heuristic strategies for generating candidate neighborhood of the curred assignment and selecting varibables to be flipped are presented. Especially,the aspiration criterion and tabu list tructure of TSSAT are different from those of traditional tabu search.Computational experiments on a class of problem insteances show that,TSSAT,in a reasonable amount of computer time ,yields better results than Novelty which is currently among the fastest known.Therefore TSSAT is feasible and effective.  相似文献   

11.
This paper defines second-order and third-order permutation global functions and presents the corresponding higher-order cellular automaton approach to the hyper-parallel undistorted data compression.The genetic algorithm is successfully devoted to finding out all the correct local compression rules for the higher-order cellualr automaton.The correctness of the higher-order compression rules,the time complexity,and the systolic hardware implementation issue are discussed.In comparison with the first-order automation method reported,the proposed higher-order approach has much faster compression speed with almost the same degree of cellular structure complexity for hardware implementation.  相似文献   

12.
In the part 2 of advanced Audio Video coding Standard (AVS-P2), many efficient coding tools are adopted in motion compensation, such as new motion vector prediction, symmetric matching, quarter precision interpolation, etc. However, these new features enormously increase the computational complexity and the memory bandwidth requirement, which make motion compensation a difficult component in the implementation of the AVS HDTV decoder. This paper proposes an efficient motion compensation architecture for AVS-P2 video standard up to the Level 6.2 of the Jizhun Profile. It has a macroblock-level pipelined structure which consists of MV predictor unit, reference fetch unit and pixel interpolation unit. The proposed architecture exploits the parallelism in the AVS motion compensation algorithm to accelerate the speed of operations and uses the dedicated design to optimize the memory access. And it has been integrated in a prototype chip which is fabricated with TSMC 0.18-#m CMOS technology, and the experimental results show that this architecture can achieve the real time AVS-P2 decoding for the HDTV 1080i (1920 - 1088 4 : 2 : 0 60field/s) video. The efficient design can work at the frequency of 148.5MHz and the total gate count is about 225K.  相似文献   

13.
Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In this paper, genetic algorithm's (GA for short) ideas are introduced into ACO to present a new binary-coding based ant colony optimization. Compared with the typical ACO, the algorithm is intended to replace the problem's parameter-space with coding-space, which links ACO with GA so that the fruits of GA can be applied to ACO directly. Furthermore, it can not only solve general combinatorial optimization problems, but also other problems such as function optimization. Based on the algorithm, it is proved that if the pheromone remainder factor ρ is under the condition of ρ≥1, the algorithm can promise to converge at the optimal, whereas if 0<ρ<1, it does not. This work is supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology under Grant No.00JC14052. Tian-Ming Bu received the M.S. degree in computer software and theory from Shanghai University, China, in 2003. And now he is a Ph.D. candidate of Fudan University in the same area of theory computer science. His research interests include algorithms, especially, heuristic algorithms and heuristic algorithms and parallel algorithms, quantum computing and computational complexity. Song-Nian Yu received the B.S. degree in mathematics from Xi'an University of Science and Technology, Xi'an, China, in 1981, the Ph.D. degree under Prof. L. Lovasz's guidance and from Lorand University, Budapest, Hungary, in 1990. Dr. Yu is a professor in the School of Computer Engineering and Science at Shanghai University. He was a visiting professor as a faculty member in Department of Computer Science at Nelson College of Engineering, West Virginia University, from 1998 to 1999. His current research interests include parallel algorithms' design and analyses, graph theory, combinatorial optimization, wavelet analyses, and grid computing. Hui-Wei Guan received the B.S. degree in electronic engineering from Shanghai University, China, in 1982, the M.S. degree in computer engineering from China Textile University, China, in 1989, and the Ph.D. degree in computer science and engineering from Shanghai Jiaotong University, China, in 1993. He is an associate professor in the Department of Computer Science at North Shore Community College, USA. He is a member of IEEE. His current research interests are parallel and distributed computing, high performance computing, distributed database, massively parallel processing system, and intelligent control.  相似文献   

14.
A range query finds the aggregated values over all selected cells of an online analytical processing (OLAP) data cube where the selection is specified by the ranges of contiguous values for each dimension. An important issue in reality is how to preserve the confidential information in individual data cells while still providing an accurate estimation of the original aggregated values for range queries. In this paper, we propose an effective solution, called the zero-sum method, to this problem. We derive theoretical formulas to analyse the performance of our method. Empirical experiments are also carried out by using analytical processing benchmark (APB) dataset from the OLAP Council. Various parameters, such as the privacy factor and the accuracy factor, have been considered and tested in the experiments. Finally, our experimental results show that there is a trade-off between privacy preservation and range query accuracy, and the zero-sum method has fulfilled three design goals: security, accuracy, and accessibility. Sam Y. Sung is an Associate Professor in the Department of Computer Science, School of Computing, National University of Singapore. He received a B.Sc. from the National Taiwan University in 1973, the M.Sc. and Ph.D. in computer science from the University of Minnesota in 1977 and 1983, respectively. He was with the University of Oklahoma and University of Memphis in the United States before joining the National University of Singapore. His research interests include information retrieval, data mining, pictorial databases and mobile computing. He has published more than 80 papers in various conferences and journals, including IEEE Transaction on Software Engineering, IEEE Transaction on Knowledge & Data Engineering, etc. Yao Liu received the B.E. degree in computer science and technology from Peking University in 1996 and the MS. degree from the Software Institute of the Chinese Science Academy in 1999. Currently, she is a Ph.D. candidate in the Department of Computer Science at the National University of Singapore. Her research interests include data warehousing, database security, data mining and high-speed networking. Hui Xiong received the B.E. degree in Automation from the University of Science and Technology of China, Hefei, China, in 1995, the M.S. degree in Computer Science from the National University of Singapore, Singapore, in 2000, and the Ph.D. degree in Computer Science from the University of Minnesota, Minneapolis, MN, USA, in 2005. He is currently an Assistant Professor of Computer Information Systems in the Management Science & Information Systems Department at Rutgers University, NJ, USA. His research interests include data mining, databases, and statistical computing with applications in bioinformatics, database security, and self-managing systems. He is a member of the IEEE Computer Society and the ACM. Peter A. Ng is currently the Chairperson and Professor of Computer Science at the University of Texas—Pan American. He received his Ph.D. from the University of Texas–Austin in 1974. Previously, he had served as the Vice President at the Fudan International Institute for Information Science and Technology, Shanghai, China, from 1999 to 2002, and the Executive Director for the Global e-Learning Project at the University of Nebraska at Omaha, 2000–2003. He was appointed as an Advisory Professor of Computer Science at Fudan University, Shanghai, China in 1999. His recent research focuses on document and information-based processing, retrieval and management. He has published many journal and conference articles in this area. He had served as the Editor-in-Chief for the Journal on Systems Integration (1991–2001) and as Advisory Editor for the Data and Knowledge Engineering Journal since 1989.  相似文献   

15.
Mobility management is a challenging topic in mobile computing environment. Studying the situation of mobiles crossing the boundaries of location areas is significant for evaluating the costs and performances of various location management strategies. Hitherto, several formulae were derived to describe the probability of the number of location areas‘ boundaries crossed by a mobile. Some of them were widely used in analyzing the costs and performances of mobility management strategies. Utilizing the density evolution method of vector Markov processes, we propose a general probability formula of the number of location areas‘ boundaries crossed by a mobile between two successive calls. Fortunately, several widely-used formulae are special cases of the proposed formula.  相似文献   

16.
We propose a new encryption algorithm relying on reversible cellular automata (CA). The behavior complexity of CA and their parallel nature makes them interesting candidates for cryptography. The proposed algorithm belongs to the class of symmetric key systems. Marcin Seredynski: He is a Ph.D. student at University of Luxembourg and Polish Academy of Sciences. He received his M.S. in 2004 from Faculty of Electronics and Information Technology in Warsaw University of Technology. His research interests include cryptography, cellular automata, nature inspired algorithms and network security. Currently he is working on intrusion detection algorithms for ad-hoc networks. Pascal Bouvry, Ph.D.: He earned his undergraduate degree in Economical & Social Sciences and his Master degree in Computer Science with distinction (’91) from the University of Namur, Belgium. He went on to obtain his Ph.D. degree (’94) in Computer Science with great distinction at the University of Grenoble (INPG), France. His research at the IMAG laboratory focussed on Mapping and scheduling task graphs onto Distributed Memory Parallel Computers. Next, he performed post-doctoral researches on coordination languages and multi-agent evolutionary computing at CWI in Amsterdam. He gained industrial experience as manager of the technology consultant team for FICS in the banking sector (Brussels, Belgium). Next, he worked as CEO and CTO of SDC (Ho Chi Minh city, Vietnam) in the telecom, semi-conductor and space industry. After that, He moved to Montreal Canada as VP Production of Lat45 and Development Director for MetaSolv Software in the telecom industry. He is currently serving as Professor in the group of Computer Science and Communications (CSC) of the Faculty of Sciences, Technology and Communications of Luxembourg University and he is heading the Intelligent & Adaptive Systems lab. His current research interests include: ad-hoc networks & grid-computing, evolutionary algorithms and multi-agent systems.  相似文献   

17.
1 IntroductionLet G = (V, E) be a connected, undirected graph with a weight function W on the set Eof edges to the set of reals. A spanning tree is a subgraph T = (V, ET), ET G E, of C suchthat T is a tree. The weight W(T) of a spanning tree T is the sum of the weights of its edges.A spanning tree with the smallest possible'weight is called a minimum spanning tree (MST)of G. Computing an MST of a given weighted graph is an important problem that arisesin many applications. For this …  相似文献   

18.
A Model for Slicing JAVA Programs Hierarchically   总被引:3,自引:0,他引:3       下载免费PDF全文
Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing TOol (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.  相似文献   

19.
Summary Algorithms for mutual exclusion that adapt to the current degree of contention are developed. Afilter and a leader election algorithm form the basic building blocks. The algorithms achieve system response times that are independent of the total number of processes and governed instead by the current degree of contention. The final algorithm achieves a constant amortized system response time. Manhoi Choy was born in 1967 in Hong Kong. He received his B.Sc. in Electrical and Electronic Engineerings from the University of Hong Kong in 1989, and his M.Sc. in Computer Science from the University of California at Santa Barbara in 1991. Currently, he is working on his Ph.D. in Computer Science at the University of California at Santa Barbara. His research interests are in the areas of parallel and distributed systems, and distributed algorithms. Ambuj K. Singh is an Assistant Professor in the Department of Computer Science at the University of California, Santa Barbara. He received a Ph.D. in Computer Science from the University of Texas at Austin in 1989, an M.S. in Computer Science from Iowa State University in 1984, and a B.Tech. from the Indian Institute of Technology at Kharagpur in 1982. His research interests are in the areas of adaptive resource allocation, concurrent program development, and distributed shared memory.A preliminary version of the paper appeared in the 12th Annual ACM Symposium on Principles of Distributed ComputingWork supported in part by NSF grants CCR-9008628 and CCR-9223094  相似文献   

20.
Summary In this paper we construct a formal specification of the problem of synchronizing asynchronous processes under strong fairness. We prove that strong interaction fairness is impossible for binary (and hence for multiway) interactions and strong process fairness is impossible for multiway interactions. Yih-Kuen Tsay received his B.S. degree form National Taiwan University in 1984 and his M.S. degree from UCLA in 1989. He is currently a Ph.D. candidate in the UCLA Computer Science Department. His research interests include distributed algorithms, fault-tolerant systems, and specification and verification of concurrent programs. Rajive L. Bagrodia received the B. Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay in 1981 and the M.A. and Ph.D. degrees in Computer Science from the University of Texas at Austin in 1983 and 1987 respectively. He is currently an Assistant Professor in the Computer Science Department at UCLA. His research interests include parallel languages, distributed algorithms, parallel simulation and software design methodologies. He was selected as a 1991 Presidential Young Investigator by NSF.This research was partially supported by NSF PYI Award number ASC9157610 and by ONR under grant N00014-91-J1605  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号