首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
大多数非均衡数据集的研究集中于纯重构数据集或者纯代价敏感学习,本文针对数据集类分布非均衡和不相等误分类代价往往同时发生这一事实,提出了一种以最小误分类代价为目标的基于混合重取样的代价敏感学习算法。该算法将两种不同类型解决方案有机地融合在一起,先用样本类空间重构的方法使原始数据集的两类数据达到基本均衡,然后再引入代价敏感学习算法进行分类,能提高少数类分类精度,同时有效降低总的误分类代价。实验结果验证了该算法在处理非均衡类问题时比传统算法要优越。  相似文献   

2.
董璇  蔡立军 《微型机与应用》2012,31(18):60-62,65
非均衡数据集的分类过程中,产生了向多数类偏斜、少数类识别率较低的问题。为了提高少数类的分类精度,提出了一种S-SMO-Boost方法。该方法基于Adaboost提升算法迭代过程中错分少数类样本,构造虚拟样本,以加强对易错分样本的训练;其中构造样本利用空间插值方法,即在错分少数类样本周围构造超几何体,在该超几何体内部空间随机插值产生有效虚拟样本。在实际数据集上进行实验验证,结果表明,S-SMO-Boost方法提高了非均衡数据集的分类性能。  相似文献   

3.
基于集成的非均衡数据分类主动学习算法   总被引:1,自引:0,他引:1  
当前,处理类别非均衡数据采用的主要方法之一就是预处理,将数据均衡化之后采取传统的方法加以训练.预处理的方法主要有过取样和欠取样,然而过取样和欠取样都有自己的不足,提出拆分提升主动学习算法SBAL( Split-Boost Active Learning),该算法将大类样本集根据非均衡比例分成多个子集,子集与小类样本集合并,对其采用AdaBoost算法训练子分类器,然后集成一个总分类器,并基于QBC( Query-by-committee)主动学习算法主动选取有效样本进行训练,基本避免了由于增加样本或者减少样本所带来的不足.实验表明,提出的算法对于非均衡数据具有更高的分类精度.  相似文献   

4.
在灾害天气、故障诊断、网络攻击和金融欺诈等领域经常存在不平衡的数据集。针对随机森林算法在非平衡数据集上表现的分类性能差的问题,提出一种新的过采样方法:SCSMOTE(Seed Center Synthetic Minority Over-sampling Technique)算法。该算法的关键是在数据集的少数类样本中找出合适的候选样本,计算出候选样本的中心,在候选样本与样本中心之间产生新的少数类样本,实现了对合成少数类样本质量的控制。结合SCSMOTE算法与随机森林算法来处理非平衡数据集,通过在UCI数据集上对比实验结果表明,该算法有效提高了随机森林在非平衡数据集上的分类性能。  相似文献   

5.
冯宏伟  姚博  高原  王惠亚  冯筠 《控制与决策》2017,32(10):1831-1836
针对非均衡数据分类效果差的问题,提出一种新的基于边界混合采样的非均衡数据处理方法(BMS).首先通过引进“变异系数”找出样本的边界域和非边界域;然后对边界域中的少数类样本进行过采样,对非边界域中的多数类样本进行随机欠采样,以期达到训练数据基本平衡的目标.实验结果表明,BMS方法比其他3种流行的非均衡数据处理方法在对7个公开数据集的分类性能上平均提高了5%左右,因此,该方法可以广泛应用于非均衡数据的处理和分类中.  相似文献   

6.
一种改进的少数类样本过抽样算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对偏斜数据集的分类问题,提出一种改进的少数类样本过抽样算法(B-ISMOTE)。在边界少数类实例及其最近邻实例构成的 n维球体空间内进行随机插值,以此产生虚拟少数类实例,减小数据的不均衡程度。在实际数据集上进行实验,结果证明,与SMOTE算法和B-SMOTE算法相比,B-ISMOTE算法具有较优的分类性能。  相似文献   

7.
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。  相似文献   

8.
不平衡数据分类是机器学习研究领域中的一个热点问题。针对传统分类算法处理不平衡数据的少数类识别率过低问题,文章提出了一种基于聚类的改进AdaBoost分类算法。算法首先进行基于聚类的欠采样,在多数类样本上进行K均值聚类,之后提取聚类质心,与少数类样本数目一致的聚类质心和所有少数类样本组成新的平衡训练集。为了避免少数类样本数量过少而使训练集过小导致分类精度下降,采用少数过采样技术过采样结合聚类欠采样。然后,借鉴代价敏感学习思想,对AdaBoost算法的基分类器分类误差函数进行改进,赋予不同类别样本非对称错分损失。实验结果表明,算法使模型训练样本具有较高的代表性,在保证总体分类性能的同时提高了少数类的分类精度。  相似文献   

9.
不平衡数据分类是当前机器学习的研究热点,传统分类算法通常基于数据集平衡状态的前提,不能直接应用于不平衡数据的分类学习.针对不平衡数据分类问题,文章提出一种基于特征选择的改进不平衡分类提升算法,从数据集的不同类型属性来权衡对少数类样本的重要性,筛选出对有效预测分类出少数类样本更意义的属性,同时也起到了约减数据维度的目的.然后结合不平衡分类算法使数据达到平衡状态,最后针对原始算法错分样本权值增长过快问题提出新的改进方案,有效抑制权值的增长速度.实验结果表明,该算法能有效提高不平衡数据的分类性能,尤其是少数类的分类性能.  相似文献   

10.
用于不均衡数据集分类的KNN算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对KNN在处理不均衡数据集时,少数类分类精度不高的问题,提出了一种改进的算法G-KNN。该算法对少数类样本使用交叉算子和变异算子生成部分新的少数类样本,若新生成的少数类样本到父代样本的欧几里德距离小于父代少数类之间的最大距离,则认为是有效样本,并把这类样本加入到下轮产生少数类的过程中。在UCI数据集上进行测试,实验结果表明,该方法与KNN算法中应用随机抽样相比,在提高少数类的分类精度方面取得了较好的效果。  相似文献   

11.
用于不平衡数据分类的0阶TSK型模糊系统   总被引:3,自引:0,他引:3  
顾晓清  蒋亦樟  王士同 《自动化学报》2017,43(10):1773-1788
处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.  相似文献   

12.
基于聚类融合的不平衡数据分类方法   总被引:2,自引:0,他引:2  
不平衡数据分类问题目前已成为数据挖掘和机器学习的研究热点。文中提出一类基于聚类融合的不平衡数据分类方法,旨在解决传统分类方法对少数类的识别率较低的问题。该方法通过引入“聚类一致性系数”找出处于少数类边界区域和处于多数类中心区域的样本,并分别使用改进的SMOTE过抽样方法和改进的随机欠抽样方法对训练集的少数类和多数类进行不同的处理,以改善不同类数据的平衡度,为分类算法提供更好的训练平台。通过实验对比8种方法在一些公共数据集上的分类性能,结果表明该方法对少数类和多数类均具有较高的识别率。  相似文献   

13.
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行[K]-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。  相似文献   

14.
不平衡数据分类方法综述   总被引:1,自引:0,他引:1  
随着信息技术的快速发展,各领域的数据正以前所未有的速度产生并被广泛收集和存储,如何实现数据的智能化处理从而利用数据中蕴含的有价值信息已成为理论和应用的研究热点.数据分类作为一种基础的数据处理方法,已广泛应用于数据的智能化处理.传统分类方法通常假设数据类别分布均衡且错分代价相等,然而,现实中的数据通常具有不平衡特性,即某一类的样本数量要小于其他类的样本数量,且少数类具有更高错分代价.当利用传统的分类算法处理不平衡数据时,由于多数类和少数类在数量上的倾斜,以总体分类精度最大为目标会使得分类模型偏向于多数类而忽略少数类,造成少数类的分类精度较低.如何针对不平衡数据分类问题设计分类算法,同时保证不平衡数据中多数类与少数类的分类精度,已成为机器学习领域的研究热点,并相继出现了一系列优秀的不平衡数据分类方法.鉴于此,对现有的不平衡数据分类方法给出较为全面的梳理,从数据预处理层面、特征层面和分类算法层面总结和比较现有的不平衡数据分类方法,并结合当下机器学习的研究热点,探讨不平衡数据分类方法存在的挑战.最后展望不平衡数据分类未来的研究方向.  相似文献   

15.
Identifying the temporal variations in mental workload level (MWL) is crucial for enhancing the safety of human–machine system operations, especially when there is cognitive overload or inattention of human operator. This paper proposed a cost-sensitive majority weighted minority oversampling strategy to address the imbalanced MWL data classification problem. Both the inter-class and intra-class imbalance problems are considered. For the former, imbalance ratio is defined to determine the number of the synthetic samples in the minority class. The latter problem is addressed by assigning different weights to borderline samples in the minority class based on the distance and density meaures of the sample distribution. Furthermore, multi-label classifier is designed based on an ensemble of binary classifiers. The results of analyzing 21 imbalanced UCI multi-class datasets showed that the proposed approach can effectively cope with the imbalanced classification problem in terms of several performance metrics including geometric mean (G-mean) and average accuracy (ACC). Moreover, the proposed approach was applied to the analysis of the EEG data of eight experimental participants subject to fluctuating levels of mental workload. The comparative results showed that the proposed method provides a competing alternative to several existing imbalanced learning algorithms and significantly outperforms the basic/referential method that ignores the imbalance nature of the dataset.  相似文献   

16.
Classification with imbalanced datasets supposes a new challenge for researches in the framework of machine learning. This problem appears when the number of patterns that represents one of the classes of the dataset (usually the concept of interest) is much lower than in the remaining classes. Thus, the learning model must be adapted to this situation, which is very common in real applications. In this paper, a dynamic over-sampling procedure is proposed for improving the classification of imbalanced datasets with more than two classes. This procedure is incorporated into a memetic algorithm (MA) that optimizes radial basis functions neural networks (RBFNNs). To handle class imbalance, the training data are resampled in two stages. In the first stage, an over-sampling procedure is applied to the minority class to balance in part the size of the classes. Then, the MA is run and the data are over-sampled in different generations of the evolution, generating new patterns of the minimum sensitivity class (the class with the worst accuracy for the best RBFNN of the population). The methodology proposed is tested using 13 imbalanced benchmark classification datasets from well-known machine learning problems and one complex problem of microbial growth. It is compared to other neural network methods specifically designed for handling imbalanced data. These methods include different over-sampling procedures in the preprocessing stage, a threshold-moving method where the output threshold is moved toward inexpensive classes and ensembles approaches combining the models obtained with these techniques. The results show that our proposal is able to improve the sensitivity in the generalization set and obtains both a high accuracy level and a good classification level for each class.  相似文献   

17.
Class imbalance limits the performance of most learning algorithms since they cannot cope with large differences between the number of samples in each class, resulting in a low predictive accuracy over the minority class. In this respect, several papers proposed algorithms aiming at achieving more balanced performance. However, balancing the recognition accuracies for each class very often harms the global accuracy. Indeed, in these cases the accuracy over the minority class increases while the accuracy over the majority one decreases. This paper proposes an approach to overcome this limitation: for each classification act, it chooses between the output of a classifier trained on the original skewed distribution and the output of a classifier trained according to a learning method addressing the course of imbalanced data. This choice is driven by a parameter whose value maximizes, on a validation set, two objective functions, i.e. the global accuracy and the accuracies for each class. A series of experiments on ten public datasets with different proportions between the majority and minority classes show that the proposed approach provides more balanced recognition accuracies than classifiers trained according to traditional learning methods for imbalanced data as well as larger global accuracy than classifiers trained on the original skewed distribution.  相似文献   

18.
在机器学习及其分类问题时经常会遇到非平衡数据集,为了提高非平衡数据集分类的有效性,提出了基于商空间理论的过采样分类算法,即QMSVM算法。对训练集中多数类样本进行聚类结构划分,所得划分结果和少数类样本合并进行线性支持向量机(SVM)学习,从而获取多数类样本的支持向量和错分的样本粒;另一方面,获取少数类样本的支持向量和错分的样本,进行SMOTE采样,最后把上述得到的两类样本合并进行SVM学习,这样来实现学习数据集的再平衡处理,从而得到更加合理的分类超平面。实验结果表明,和其他几种算法相比,所提算法虽在正确分类率上有所降低,但较大改善了g_means值和acc+值,且对非平衡率较大的数据集效果会更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号