首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
研究13轮CLEFIA-128算法,在9轮不可能差分攻击的基础上,提出一种未使用白化密钥的不可能差分密码分析方法。猜测每个密钥,筛选满足轮函数中S盒输入输出差分对的数据对。利用轮密钥之间的关系减少密钥猜测量,并使用Early Abort技术降低计算复杂度。计算结果表明,该方法的数据复杂度和时间复杂度分别为2120和2125.5。  相似文献   

2.
邱丰品  卫宏儒 《计算机科学》2015,42(11):208-211
为研究分组密码CLEFIA-128抵抗不可能差分攻击的能力,基于一条9轮不可能差分路径,分析了13轮不带白化密钥的CLEFIA-128算法。利用轮函数中S盒差分分布表恢复部分密钥,利用轮密钥之间的关系减少密钥猜测量,并使用部分密钥分别猜测(Early Abort)技术有效地降低了复杂度。计算结果表明,该方法的数据复杂度和时间复杂度分别为O(2103.2)和O(2124.1)。  相似文献   

3.
Pyjamask是美国国家技术标准研究院征选后量子时代轻量级密码算法中进入第二轮的候选分组密码,对其抵抗现在流行的不可能差分分析分析为未来在实际系统中使用起到重要的作用.提出一些2.5轮不可能差分链并分析它们的结构特点和攻击效率,在一些最有效的不可能差分链的前后各接1轮和半轮,形成4轮Py-jamask多重不可能差分攻击路径.攻击结果表明Pyjamask的行混淆运算扩散性比较强,能较好地抵抗不可能差分分析,此结果是对Pyjamask安全性分析的一个重要补充.  相似文献   

4.
Mysterion算法是XLS设计策略的具体实例,该算法的主要目的是改进LS设计策略,在不影响实现效率的前提下提升LS设计策略的安全性.文章采用不可能差分分析方法对Mysterion算法进行安全性分析,首先证明了Mysterion算法的结构不可能差分轮数最长为4轮,然后利用S盒的信息,突破了Mysterion的结构不可...  相似文献   

5.
CRAFT是FSE 2019年提出的一种轻量级可调分组密码,适用于硬件实现面积小且资源受限设备保护信息的安全.该算法使用128 bit密钥和64 bit调柄值加密64 bit明文,对其进行安全性评估,可以为日后使用提供理论依据.通过研究CRAFT的结构特点和密钥编排方案的冗余性,利用预计算表、等效密钥和轮密钥线性关系等技术,选取一条充分利用密钥冗余性的13轮不可能差分链,在其前后分别接3轮和5轮,提出了对21轮CRAFT的不可能差分分析.攻击的时间、数据和存储复杂度为296.74次加密,253.6个选择明文和256.664-比特块.此攻击是对缩减轮CRAFT算法在单密钥和单调柄值情形下时间复杂度最低的分析.该方法依赖于调柄值调度算法的线性相关,有助于更进一步理解CRAFT的设计.  相似文献   

6.
CRAFT是FSE 2019年提出的一种轻量级可调分组密码,适用于硬件实现面积小且资源受限设备保护信息的安全.该算法使用128 bit密钥和64 bit调柄值加密64 bit明文,对其进行安全性评估,可以为日后使用提供理论依据.通过研究CRAFT的结构特点和密钥编排方案的冗余性,利用预计算表、等效密钥和轮密钥线性关系等技术,选取一条充分利用密钥冗余性的13轮不可能差分链,在其前后分别接3轮和5轮,提出了对21轮CRAFT的不可能差分分析.攻击的时间、数据和存储复杂度为296.74次加密,253.6个选择明文和256.664-比特块.此攻击是对缩减轮CRAFT算法在单密钥和单调柄值情形下时间复杂度最低的分析.该方法依赖于调柄值调度算法的线性相关,有助于更进一步理解CRAFT的设计.  相似文献   

7.
分析了Midori-64算法在截断不可能差分攻击下的安全性.首先,通过分析Midori算法加、解密过程差分路径规律,证明了Midori算法在单密钥条件下的截断不可能差分区分器至多6轮,并对6轮截断不可能差分区分器进行了分类;其次,根据分类结果,构造了一个6轮区分器,并给出11轮Midori-64算法的不可能差分分析,恢复了128比特主密钥,其时间复杂度为2121.4,数据复杂度为260.8,存储复杂度为296.5.  相似文献   

8.
不可能差分是对分组密码的一种有效攻击方法.它是寻找不可能出现的差分关系,并排除满足这种关系的密钥,最终恢复出秘密密钥.分析了韩国新型分组密码算法ARIA的不可能差分.首先分析了ARIA混淆层的特性,构造了ARIA的4轮不可能差分,选择225.5个明文对,使其密文异或具有低64b为零的形式,利用4轮不可能差分特性对5轮的ARIA进行了分析.选择230个明文对对6轮ARIA进行分析.  相似文献   

9.
Crypton算法是基于Square算法设计的SPN结构类密码算法,由于其具备良好的软硬件性能而引起了广泛的关注.对Crypton分组密码算法在不可能差分分析下的安全性进行了研究.通过分析Crypton算法扩散层的性质,指出了现有7轮Crypton算法不可能差分分析中存在的问题,结合快速排序、分割攻击与早夭技术对7轮Crypton算法的不可能差分分析进行了改进,降低了其数据复杂度与时间复杂度;同时,通过并行使用4条不可能差分区分器,结合密钥扩展算法的性质给出了7轮Crypton算法的多重不可能差分分析结果,恢复了算法的主密钥;最后,在7轮Crypton算法的不可能差分分析的基础上向后拓展1轮,给出了8轮Crypton-256算法的不可能差分分析,恢复了其主密钥,其数据复杂度为2\\+{103}个选择明文,时间复杂度为2\\+{214}次8轮Crypton加密,存储复杂度为2\\+{154.4} B.研究结果表明:结合算法的性质及多种技术给出了Crypton算法目前最优的不可能差分分析结果.  相似文献   

10.
石淑英  何骏 《计算机工程》2019,45(10):134-138
GRANULE算法是一个超轻量分组密码算法,有着较好的软硬件实现性能,但目前尚没有该算法在不可能差分分析下的安全性评估结果。为此,利用中间相错技术,找到GRANULE64算法多条5轮不可能差分区分器,并基于得到的区分器,向上、下分别扩展3轮,给出对GRANULE64/80算法的11轮不可能差分分析。通过该算法可以恢复80-bit主密钥,时间复杂度为2~(73.3)次11轮GRANULE64算法加密,数据复杂度为2~(64)个选择明文。  相似文献   

11.
12.
This paper studies the security of the block ciphers ARIA and Camellia against impossible differential cryptanalysis. Our work improves the best impossible differential cryptanalysis of ARIA and Camellia known so far. The designers of ARIA expected no impossible differentials exist for 4-round ARIA. However, we found some nontrivial 4-round impossible differentials, which may lead to a possible attack on 6-round ARIA. Moreover, we found some nontrivial 8-round impossible differentials for Camellia, whereas only 7-round impossible differentials were previously known. By using the 8-round impossible differentials, we presented an attack on 12-round Camellia without FL/FL^-1 layers.  相似文献   

13.
通过分析高级加密标准AES的三轮加密内部特征,推导出一个新的3轮差分路径,该路径存在的可能性为2-22,在该性质的基础上利用不可能差分分析方法,分析了8轮AES_128.该分析方法需要287对明文、约299个存储单元和约296加解密运算.通过该分析可以看出AES算法的行列变换的混淆程度不够,这为我们提升和改进AES安全性提供理论依据.  相似文献   

14.
现有的对于Piccolo算法的安全性分析结果中,除Biclique分析外,以低于穷举搜索的复杂度最长仅攻击至14轮Piccolo-80和18轮Piccolo-128算法.通过分析Piccolo算法密钥扩展的信息泄漏规律,结合算法等效结构,利用相关密钥-不可能差分分析方法,基于分割攻击思想,分别给出了15轮Piccolo-80和21轮Piccolo-128含前向白化密钥的攻击结果.当选择相关密钥量为28时,攻击所需的数据复杂度分别为258.6和262.3,存储复杂度分别为260.6和264.3,计算复杂度分别为278和282.5;在选择相关密钥量为24时,攻击所需的数据复杂度均为262.6和262.3,存储复杂度分别为264.6和264.3,计算复杂度分别为277.93和2124.45.分析结果表明,仅含前向白化密钥的15轮Piccolo-80算法和21轮Piccolo-128算法在相关密钥-不可能差分攻击下是不安全的.  相似文献   

15.
LBlock算法是2011年提出的轻量级分组密码,适用于资源受限的环境.目前,关于LBlock最好的分析结果为基于14轮不可能差分路径和15轮的相关密钥不可能差分路径,攻击的最高轮数为22轮.为研究LBlock算法抵抗不可能差分性质,结合密钥扩展算法的特点和轮函数本身的结构,构造了新的4条15轮相关密钥不可能差分路径.将15轮差分路径向前扩展4轮、向后扩展3轮,分析了22轮LBlock算法.在已有的相关密钥不可能差分攻击的基础上,深入研究了轮函数中S盒的特点,使用2类相关密钥不可能差分路径.基于部分密钥分别猜测技术降低计算量,分析22轮LBlock所需数据量为261个明文,计算量为259.58次22轮加密.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号