首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
随着现代以太网应用对时钟同步精度要求的日益严格,IEEE1588时钟同步协议从开始的2002版本发展到了2008版本。针对IEEE1588时钟同步技术的原理、组网方式进行了阐述,提出了IEEE1588时钟同步系统节点的具体实现方案并提出了测试方案。经过对实验数据的分析,证明了提出的IEEE1588实现方案的可行性,对于互联网内高精度时钟同步的实现,进行了探索与验证。  相似文献   

2.
以太网时间同步技术的研究进展及其应用   总被引:8,自引:2,他引:6  
精确的时间同步是网络化测试和控制的一项关键技术.分析比较了几种主要的以太网时间同步协议,并重点介绍了IEEE 1588协议(精确同步时钟协议)如何实现以太网的时间同步,分析了该协议在武器装备领域的应用前景.  相似文献   

3.
根据任务需求的要求,在测试对象信息量大的背景下测试系统越来越多的开始关注系统之间的数据共享。IEEE提出了一种把与同步相关的时间信息封装在数据报文中的技术,使组网连接简化,从而有效地解决了系统实时性问题。该文讨论的是测试系统网络化的前提下,采用IEEE1588精密时间同步协议解决网络化测试系统时间不确定性的问题。  相似文献   

4.
随着网络技术的飞速发展,分布式应用系统的规模越来越大,网络中各远距离节点间的时间同步性要求越来越高;这种高同步性要求在诸如分布式数据采集和测试测量系统中尤为重要。IEEE 1588——精确时间协议(PTP,Precision Time Protocol)为此提供了一个很好的解决方案,它是一种主要基于以太网的精确时钟同步技术,其同步成本低、精度高、协议开放,广泛应用于各种通信、测试测量设备;文章着重介绍了如何在分布式数据采集系统中实现IEEE 1588PTP协议,其实现原理可应用到其它类似基于IEEE 1588PTP协议的分布式应用中;采用此方法构建的分布式数据采集系统同步精度达到了纳秒级。  相似文献   

5.
IEEE 1588精密时钟同步协议广泛应用于分布式测量系统中。文章指出了影响网络化设备时钟同步的因素,分析了精密时钟协议PTP的工作原理,阐明了网络化测控总线LXI系统的主要特点,并从PTP协议结构和算法入手,说明了PTP协议在LXI测试系统中的具体应用,最后展望了LXI测试系统的前景。  相似文献   

6.
随着分布式测试技术的快速发展,对地理位置分散的测试设备协同完成测试任务的需求也越来越大,而设备之间的时钟同步精度成为制约测试效果的关键因素;为了对时钟同步精度的影响因素进行研究,提出了基于IEEE1588协议的网络时钟同步实现方案;首先对IEEE1588基本原理进行分析,然后提出了IEEE1588协议的实现方案,最后搭建实验平台对影响同步精度的因素进行研究;研究结果表明,同步间隔和网络拓扑结构影响时钟同步精度的两个主要因素。  相似文献   

7.
阐述同步以太网的概念;介绍IEEE1588标准和相关同步协议,以及实现分布式网络化系统精确时钟同步的原理和方法;介绍了2款常用的基于IEEE1588的同步以太网芯片,并给出了具体应用实例。  相似文献   

8.
网络化混合测试系统中的时间同步机制研究   总被引:1,自引:0,他引:1  
时间同步是网络化测试技术的重要课题之一.根据网络化混合测试系统的体系结构的特点,分析了常用时间同步方法,提出分层式混合同步的方法实现了系统的时钟同步;这种同步方式将GPS硬件方式和改进的IEEE1588软件方式有机地融合在一起,很好地结合了系统的层次结构,具有良好的扩展性和兼容性.  相似文献   

9.
IEEE 1588精密时钟同步协议2.0版本浅析   总被引:3,自引:0,他引:3  
在分布式测控系统中,各分布式设备、独立的智能传感器、作动器与系统之间的时钟同步是系统测控数据有效性的关键。IEEE 1588精密时钟同步协议有效地解决了分布式测控系统时间同步问题,也是新测试系统总线标准LXI的核心技术之一。首先介绍了IEEE 1588时钟同步的基本原理,之后主要针对最新发布的IEEE 1588 2.0版本所采用的新技术、新方法进行了分析,为进一步研究打下基础。  相似文献   

10.
多基地声呐技术将会在未来发挥越来越重要的作用;而基于以太网的声呐湿端数据采集与传输系统在多基地声呐应用中对时间同步技术提出了更高的要求和挑战;文章提出了基于IEEE1588v2标准的精确时间同步协议方案,并用支持IEEE1588的以太网交换机和PHY芯片实现了多基地声呐设备间的同步;测试结果表明,同步精度达到了亚微秒级别。  相似文献   

11.
IEEE1588协议硬件时间戳标记电路设计   总被引:1,自引:0,他引:1  
IEEE1588协议是一种基于网络多播技术的精密时钟同步协议,为了提高时钟同步的精度,提出了一种在以太网物理层和MAC层之间的介质无关接口(MII/RMII)处检测同步报文的策略和实现精确时间戳标记方案,在此方案基础上设计和实现了基于FP-GA的硬件时间戳标记电路;设计了相关测试平台,对设计电路进行了测试和验证,测试结果表明设计的时间戳标记电路可以在RMII接口处实时地标记同步报文的收发时间戳,设计达到课题要求,应用性能良好。  相似文献   

12.
在高速数据传输的分布式数据采集系统中,各个组成单元间的时钟同步是保证系统正常工作的关键。由于系统工作于局域网,于是借鉴了IEEE1588时钟同步协议的原理,设计出简易、高效的时钟同步方案,并在基于局域网的分布式数据采集系统中实现微秒级的精确同步。鉴于方案的高可行性和高效性,可将其推广到其他分布式局域网系统中。  相似文献   

13.
基于加权最小二乘法的精确时钟同步算法研究与实现   总被引:2,自引:0,他引:2  
提出了一种基于加权最小二乘法的从时钟频率自补偿算法。该算法采用从时钟频率自补偿算法解决了每两次PTP同步之间时钟漂移偏差逐步扩大的问题,并引入加权最小二乘法来求取频率自补偿算法中的动态补偿值。该算法在以Altera Cyclone Ⅱ FPGA为主控芯片的开发平台上通过了验证,测试结果表明,算法的引入显著提高了PTP的同步精度,同步精度达到1μs。  相似文献   

14.
基于IEEE1588协议的精确时钟同步算法改进   总被引:2,自引:0,他引:2  
在工业控制领域,时钟同步精度是影响工业以太网实时性的一个重要因素。为了满足工业以太网对时钟同步的高精度要求,本文对IEEE1588精确时间同步协议进行了研究,阐述了该算法实现高精度同步的原理,并针对以太网通讯路径不对称的情况,提出了一种同步改进算法,通过对同步延迟计算进行加权修正,提高了时钟同步精度。最后,在自行设计的测试系统中进行了测试,测试结果表明,改进算法有效提高了路径不对称条件下的时钟同步精度。  相似文献   

15.
本文研究了IEEE 1588精确时间同步协议的基本原理、核心算法和技术特点。该协议主要解决传统网络时间同步技术精度不高和安全性差等问题。相比已有的基于网络时间协议(NTP)或GPS的时间同步技术,基于IEEE 1588协议的时间同步技术具有很高的精确性、安全性和可控性,能够较好地满足通信网同步、电力系统、工业控制、高精密测量等应用领域的时间同步要求。  相似文献   

16.
分布式声学测量设备中精确时钟同步研究   总被引:2,自引:0,他引:2  
为了解决分布式网络化测量不同传感器之间的时间同步问题,改变依赖全球卫星定位系统和高精度时钟源所带来的安全和成本问题,根据现有同步方式和分布式测量的同步需求,研究了简单网络时间协议等和IEEE1588精确时钟同步原理,基于测量的需求选择了IEEE1588。由于该协议未提供时钟漂移的补偿方法,为了解决频率补偿问题,提出了一种简单可靠的时钟频率偏移计算补偿方法,实验验证了该方案能够满足工业噪声与振动的测量要求。  相似文献   

17.
IEEE1588精确时间协议的研究与应用   总被引:7,自引:1,他引:6  
为了解决TD-SCDMA系统中无线基站NodeB与无线网络控制器RNC之间的时间同步技术问题,改变全球定位系统作为惟一解决方案的现状,研究了IEEEl588V1及IEEE1588V2技术原理,综合比较了已有的网络时间协议NTP.简单网络时问协议SNTP等时间同步技术,结果表明,IEEEl588具有更高时间同步精度,符合TD-SCDMA系统时间同步精度要求.根据目前电信网络体系,设计了基于现有网络并结合IEEE1588技术的组网方案.  相似文献   

18.
PTP协议是IEEE-1588中定义的一种精密时钟同步协议,广泛应用于分布式系统中。但当采用纯软件实现时,同步精度受到网卡的缓存效应、网络的平稳性和操作系统的进程调度等多种因素的影响,难以达到亚毫秒的精度。本文通过分析各种影响因素的特点,结合PTP协议时钟同步机制,提出了一种高精度时钟同步方法,通过采用握手机制以及对测量数据进行处理,有效减弱了各种因素的影响,并结合基于CPU定时器构造的高精度时钟,实现了亚毫秒精度的时钟同步。  相似文献   

19.
IEEE1588精准时钟协议的IP设计   总被引:2,自引:0,他引:2  
王兰  杨志家 《微计算机信息》2007,23(26):288-289,53
IEEE1588协议是一种应用于分布式测量和控制系统中的精准时钟协议,文章提出IEEE1588协议IP实现的设计架构,并详述了架构中最佳主时钟(BMC)以及时钟校准电路的设计原理和实现。通过模型仿真验证了该设计的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号