首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is to consider dynamic output feedback H control of mean‐field type for stochastic discrete‐time systems with state‐ and disturbance‐dependent noise. A stochastic bounded real lemma (SBRL) of mean‐field type is derived. Based on the SBRL, a sufficient condition with the form of coupled nonlinear matrix inequalities is derived for the existence of a stabilizing H controller. Moreover, a numerical example is given to examine the effectiveness of the theoretical results.  相似文献   

2.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

3.
This paper investigates the reliable H filtering problem for a class of mixed time‐delay systems with stochastic nonlinearities and multiplicative noises. The mixed delays comprise both discrete time‐varying and distributed delays. The stochastic nonlinearities in the form of statistical means cover several well‐studied nonlinear functions. The multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. Furthermore, the failures of sensors are quantified by a variable varying in a given interval. In the presence of mixed delays, stochastic nonlinearities, and multiplicative noises, sufficient conditions for the existence of a reliable H filter are derived, such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a guaranteed H performance level. Then, a linear matrix inequality (LMI) approach for designing such a reliable H filter is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.  相似文献   

4.
In this paper, the H control problem is investigated for a general class of discrete‐time nonlinear stochastic systems with state‐, control‐, and disturbance‐dependent noises (also called (x, u, v)‐dependent noises). In the system under study, the system state, the control input, and the disturbance input are all coupled with white noises, and this gives rise to considerable difficulties in the stability and H performance analysis. By using the inequality techniques, a sufficient condition is established for the existence of the desired controller such that the closed‐loop system is mean‐square asymptotically stable and also satisfies H performance constraint for all nonzero exogenous disturbances under the zero‐initial condition. The completing square technique is used to design the H controller with hope to reduce the resulting conservatism, and a special algebraic identity is employed to deal with the cross‐terms induced by (x, u, v)‐dependent noises. Several corollaries with simplified conditions are presented to facilitate the controller design. The effectiveness of the developed methods is demonstrated by two numerical examples with one concerning the multiplier‐accelerator macroeconomic system.  相似文献   

5.
In this paper, the exponential H filter design problem is investigated for a general class of stochastic time‐varying delay system with Markovian jumping parameters. The stochastic uncertainties appear in both the dynamic and the measurement equations and the state delay is assumed to be time‐varying. Attention is focused on the design of mean‐square exponentially stable and Markovian jump filter such that the filtering error systems are mean‐square exponentially stable and the estimation error satisfies a given H performance. By introducing some slack matrix variables, delay‐dependent sufficient conditions for the solvability of the above problem are presented in terms of linear matrix inequalities (LMIs). In addition, the decay rate can be a given positive value without any other constraints. When the proposed LMIs are feasible, an explicit expression of the desired H filter can be given. A numerical example is provided to illustrate the effectiveness of the proposed design approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the problem of H boundary control for a class of nonlinear stochastic distributed parameter systems expressed by parabolic stochastic partial differential equations (SPDEs) of Itô type. A simple but effective H boundary static output feedback (SOF) control scheme with collocated boundary measurement is introduced to ensure the local exponential stability in the mean square sense with an H performance. By using the semigroup theory, the disturbance‐free closed‐loop well‐posedness analysis is first given. Then, based on the SPDE model, a general linear matrix inequality based H boundary SOF control design is provided via Lyapunov technique and infinite‐dimensional infinitesimal operator, such that the disturbance‐free closed‐loop system is locally exponentially stable in the mean square sense and the H performance of disturbance attenuation can also be achieved in the presence of disturbances. Finally, simulation results on a stochastic Fisher‐Kolmogorov‐Petrovsky‐Piscounov equation illustrate the effectiveness of the proposed method.  相似文献   

7.
Linear, state‐delayed, continuous‐time systems are considered with both stochastic and norm‐bounded deterministic uncertainties in the state–space model. The problem of robust dynamic H output‐feedback control is solved, for the stationary case, via the input–output approach where the system is replaced by a nonretarded system with additional deterministic norm‐bounded uncertainties. A delay‐dependent result is obtained which involves the solution of a simple linear matrix inequality. In this problem, a cost function is defined which is the expected value of the standard H performance cost with respect to the stochastic parameters. A practical example taken from the field of guidance control is given that demonstrates the applicability of the theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the robust H control problem for stochastic systems with a delay in the state. Sufficient delay‐dependent conditions for the existence of state‐feedback controllers are proposed to guarantee mean‐square asymptotic stability as well as the prescribed H performance for the closed‐loop systems. Moreover, the results are further extended to the stochastic time‐delay systems with parameter uncertainties, which are assumed to be time‐varying norm‐bounded appearing in both the state and the input matrices. The appealing idea is to partition the delay, which differs greatly from the most existing results and reduces conservatism by thinning the delay partitioning. Numerical examples are provided to show the advantages of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

10.
This paper deals with the problem of network‐based H control for a class of uncertain stochastic systems with both network‐induced delays and packet dropouts. The networked control system under consideration is represented by a stochastic model, which consists of two successive delay components in the state. The uncertainties are assumed to be time varying and norm bounded. Sufficient conditions for the existence of H controller are proposed to ensure exponentially stable in mean square of the closed‐loop system that also satisfies a prescribed performance. The conditions are expressed in the frame of linear matrix inequalities (LMIs), which can be verified easily by means of standard software. Two practical examples are provided to show the effectiveness of the proposed techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with the problem of robust H filtering for uncertain stochastic systems. The system under consideration is subject to time‐varying norm‐bounded parameter uncertainties and unknown time delays in both the state and measurement equations. The problem we address is the design of a stable filter that ensures the robust stochastic stability and a prescribed H performance level for the filtering error system irrespective of all admissible uncertainties and time delays. A suffient condition for the solvability of this problem is proposed and a linear matrix inequality approach is developed for the design of the robust H filters. An illustrative example is provided to demonstrate the effctiveness of the proposed approach.  相似文献   

13.
The extended H filter (EHF) is a conservative solution with infinite‐horizon robustness for the state estimation problem regarding nonlinear systems with stochastic uncertainties, which leads to excessive costs in terms of filtering optimality and reduces the estimation precision, particularly when uncertainties related to external disturbances and noise appear intermittently. In order to restore the filtering optimality lost due to the conservativeness of the EHF design, we developed an optimal‐switched (OS) filtering mechanism based on the standard EHF to obtain an optimal‐switched extended H filter (OS‐EHF). The OS mechanism has an error‐tolerant switched (ETS) structure, which switches the filtering mode between optimal and H robust by setting a switching threshold with redundancy to uncertainties, and a robustness‐optimality cost function (ROCF) is introduced to determine the threshold and optimize the ETS structure online. The ROCF is the weighted sum of the quantified filtering robustness and optimality. When a weight is given, the proposed OS‐EHF can obtain the optimal state estimates while maintaining the filtering robustness at an invariant ratio. A simulation example of space target tracking has demonstrated the superior estimation performance of the OS‐EHF compared with some other typical filters, thereby verifying the effectiveness of using the weight to evaluate the estimation result of the filters.  相似文献   

14.
In this paper, the mean‐square exponential stability and H control problems are investigated for a general class of stochastic time‐delay systems with Markovian jumping parameters. First, a delay‐dependent result in terms of linear matrix inequalities (LMIs) for mean‐square exponential stability and H performance analysis is presented by constructing a modified Lyapunov‐Krasovskii functional. The decay rate can be chosen in a range to be a finite positive constant without equation constraint. Then, based on the proposed stability result, we derive sufficient condition to solve the H controller design problem. Finally, numerical examples are provided to illustrate the effectiveness of the theoretical results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
The stochastic finite‐time H filtering issue for a class of nonlinear continuous‐time singular semi‐Markov jump systems is discussed in this paper. Firstly, sufficient conditions on singular stochastic H finite‐time boundedness for the filtering error system are established. The existence of a unique solution for the corresponding system is also ensured. Secondly, based on the bounds of the time‐varying transition rate, without imposing constraints on slack variables, a novel approach to finite‐time H filter design is proposed in the forms of strict LMIs, which guarantees the filtering error system is singular stochastic H finite‐time bounded and of a unique solution. Compared with the existing ones, the presented results reveal less conservativeness. Finally, one numerical example is exploited to testify the advantage of the proposed design technique.  相似文献   

16.
This paper studies the H control for a class of quasi‐linear uncertain stochastic time‐varying delayed systems. Firstly, by using the linear matrix inequality (LMI) method, a sufficient condition is obtained for the robustly stochastic stability. Secondly, the robust H state feedback controller is designed, such that the considered system is not only internally stochastically stabilizable but also satisfies the robust H performance. The desired robust H controller is obtained via solving some LMIs. Finally, one example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

17.
This paper is concerned with the exponential H filtering for a class of nonlinear discrete‐time switched stochastic hybrid systems with mixed time delays and random missing measurements. The switched system under study involves stochastic disturbance, time‐varying discrete delay, bounded distributed delay and nonlinearity. Attention is focused on the design of a mode‐dependent filter that guarantees the exponential stability in the mean‐square sense and a prescribed H noise attenuation level for the filtering error dynamics. By constructing a new Lyapunov functional and using the average dwell time scheme, a new delay‐dependent sufficient condition for the existence of the filter is presented in terms of linear matrix inequalities. A numerical example is finally given to show the effectiveness of the proposed design method. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper investigates the problem of delay‐dependent robust stochastic stabilization and H control for uncertain stochastic nonlinear systems with time‐varying delay. System uncertainties are assumed to be norm bounded. Firstly, by using novel method to deal with the integral terms, robustly stochastic stabilization results are obtained for stochastic uncertain systems with nonlinear perturbation, and an appropriate memoryless state feedback controller can be chosen. Compared with previous results, the new technique can sufficiently utilize more negative items information. Then, robust H control for uncertain stochastic system with time‐varying delay and nonlinear perturbation is considered, and the controller is designed, which will guarantee that closed‐loop system is robustly stochastically stable with disturbance attenuation level. Finally, two numerical examples are listed to illustrate that our results are effective and less conservative than other reports in previous literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper addresses the bounded H synchronization problem for the time‐varying coupled networks with stochastic noises and randomly occurring nonlinearities over a finite horizon. The bounded H synchronization performance constraint is proposed to quantify the degree of the synchronization regarding the exogenous disturbances. The nonlinearities considered in this paper are assumed to satisfy the sector‐like conditions and characterized by a time‐varying Bernoulli distribution with measurable probability in real time. Based on the Kronecker product and the Hadamard product, a sufficient condition is established firstly to ensure the bounded H synchronization of the network by utilizing the probability‐dependent method. Then the obtained criterion is further converted into a computationally available one by transforming the time‐varying probability into a polytopic form, which is presented in terms of matrix inequalities and hence can be verified easily by applying the Matlab toolbox. Finally, simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we analyze the finite‐horizon fault estimation issue for a kind of time‐varying nonlinear systems with imperfect measurement signals under the stochastic communication protocol (SCP). The imperfect measurements result from randomly occurring sensor nonlinearities obeying sensor‐wise Bernoulli distributions. The Markov‐chain‐driven SCP is introduced to regulate the signal transmission to alleviate the communication congestion. The aim of the considered issue is to propose the design algorithm of a group of time‐varying fault estimators such that the estimation error dynamics satisfies both the H and the finite‐time boundedness (FTB) performance requirements. First, sufficient conditions are set up to guarantee the existence of the satisfactory H FTB fault estimators through intensive stochastic analyses and matrix operations. Then, the gains of such fault estimators are explicitly parameterized by resorting to the solution to recursive linear matrix inequalities. Finally, the correctness of the devised fault estimation approach is demonstrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号