首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim  Jun-Ho  Jeong  Haesoo  Lee  Seung-Ki  Ji  Chang-Hyeon  Park  Jae-Hyoung 《Microsystem Technologies》2017,23(6):2075-2085

In this paper, we present an electromagnetically actuated two-axis scanning micromirror with large aperture and tilting angle for laser pointing applications. The two-axis micromirror with the plate size of 3 mm in diameter was realized using gimbaled single crystal silicon with a single-turn electroplated copper coil, and it was assembled with permanent magnets forming radial magnetic field. The micromirror was fabricated on SiOG (Silicon on Glass) wafer using 4 photolithography masks. The permanent magnet assembly composed of a cylindrical and a ring-type magnet was designed to optimize the radial magnetic field, and thus maximize the torque on the coil. Three different magnet assemblies were applied to the fabricated micromirror in order to verify the design. Horizontal resonance frequency of the fabricated micromirror was measured 1.421 kHz and vertical resonant frequency was 396 Hz. The vertical scan angle was 16.87°, 26.32° and 22.61° with the cylindrical magnet diameter of 2.6, 4.0 and 4.8 mm, respectively, at 60 Hz sinusoidal input of 640 mApp. For horizontal scan, maximum scan angle of 24.45° was obtained at 48 mApp input signal in resonance mode. In addition, the temperature distribution on the micromirror surface was measured with the applied current to the coil.

  相似文献   

2.
This paper reports a ferrofluid control method that enables both attraction and repelling of ferrofluid on micropatterned planar coils coupled with permanent magnets. A combinational use of a controlled magnetic field and a bias field is shown to provide lateral forces that attract/repel the ferrofluid to/from the coil depending on the direction of the current passed through the coil. Active mirror devices whose mirrors are switched by ferrofluids are developed as a proof-of-concept of the actuation method toward the application to imaging devices and optical switches. The planar devices lithographically fabricated to have arrays of mirror-coil cells are used to demonstrate activation/deactivation of individual cells enabled by the bidirectional radial motion of the ferrofluid layer with ∼100 μm thickness. The static and dynamic behaviors of the ferrofluid in the devices are characterized through an image processing approach. Multiple mirror cells are selectively and simultaneously operated to show enhanced ferrofluid control uniquely available with the two modes of the actuation as well as to demonstrate pattern generation with the arrays.  相似文献   

3.
A novel two-dimensional (2-D) optical scanner has been designed, manufactured and characterized. This scanner features a large mirror (8/spl times/6 mm) and is therefore suitable for industrial applications where cheap optical sources and lenses are requested. This scanner uses a multilayer film for its actuation. This film is well known for its high magnetostriction. The mechanical design has been optimized using conventional mechanical considerations as well as finite-element simulations. The device has been characterized in two configurations. Depending on the direction of the applied magnetic field, the magnetostrictive properties of the active film or the electromagnetic force are selectively used. Using this last, total optical deflection angles of 32/spl deg/ and 11/spl deg/ for an applied magnetic field of 0.3 mT are obtained. The ratio of the corresponding resonant frequencies is around 4.5, allowing a nice scanning pattern. Compared to our previous prototype on the same project , the mechanical-magnetic sensitivity has been improved by about a factor 24 when the magnetostriction is used, and by about a factor 75 when the electromagnetic force is used.  相似文献   

4.
A novel bidirectional magnetic microactuator using electroplated permanent magnet arrays has been designed, fabricated and characterized. To realize a bidirectional microactuator, CoNiMnP-based permanent magnet arrays have been fabricated first on a silicon cantilever beam using a new electroplating technique. In the fabricated permanent magnets, the vertical coercivity and retentivity have been achieved up to 87.6 kA/m (1100 Oe) and 190 mT (1900 G), respectively by applying magnetic field during electroplating. A prototype bidirectional magnetic microactuator has been realized by integrating an electromagnet with a silicon cantilever beam, which has permanent magnet arrays on its tip. By applying a do current of 100 mA and altering its polarity, bidirectional motion on the tip of the cantilever beam has been successfully achieved in the deflection range of ±80 μm  相似文献   

5.
A novel microelectromechanical systems (MEMS) actuation technique is developed for retinal scanning display and imaging applications allowing effective drive of a two-axes scanning mirror to wide angles at high frequency. Modeling of the device in mechanical and electrical domains, as well as the experimental characterization is described. Full optical scan angles of 65/spl deg/ and 53/spl deg/ are achieved for slow (60 Hz sawtooth) and fast (21.3 kHz sinusoid) scan directions, respectively. In combination with a mirror size of 1.5 mm, a resulting /spl theta//sub opt/D product of 79.5 deg/spl middot/mm for fast axis is obtained. This two-dimensional (2-D) magnetic actuation technique delivers sufficient torque to allow non-resonant operation as low as dc in the slow-scan axis while at the same time allowing one-atmosphere operation even at fast-scan axis frequencies large enough to support SXGA (1280 /spl times/ 1024) resolution scanned beam displays.  相似文献   

6.
A MEMS electromagnetic optical scanner for horizontal scanning of a commercial confocal laser scanning microscope has been developed. The purpose is to replace the currently used commercially available scanner with our new MEMS scanner in an existing microscope product, and therefore, the scanner specifications have to be compatible with those of the current one. Electromagnetic actuation is selected because of the millimeter-sized mirror, and a single crystal silicon hinge is used for realizing high-speed scanning with sufficient scan angle. In order to maintain mirror flatness for high quality optics requirement, the whole wafer thickness (300 /spl mu/m) is used as the mirror, resulting in a large moment of inertia, and this has been taken into consideration in the actuator design. Although few MEMS actuators have been commercialized to date, it has successfully satisfied all the specifications including not only the fundamentals such as resonant frequency and scan angle but also those for the commercial product such as scanning stability and reliability. It has been commercialized as a part of our product, Olympus OLS1100 (remodeled as OLS1200 in August 2002).  相似文献   

7.
提出一种测量激发场垂直于地磁场分量的测量方法:应用固定线圈电磁感应法测量激发场,应用磁通门传感器测量地磁场,通过矢量运算求解激发场垂直于地磁场的分量。制作了激发场测量装置,通过对比激发场的径向分量和轴向分量的理论计算值和实测值,验证测量装置有效性。分析固定点处激发场垂直于地磁场的分量受线圈布设方向的影响,推导出固定点处激发场垂直于地磁场的分量取最大值时线圈布设角度求解方法,为实际探测线圈布设方向提供理论指导。  相似文献   

8.
This paper presents a moving-coil electromagnetic optical scanner with newly developed hinge structure consisting of multilayered polyimide films with aluminum lead wires in between. The main purpose is to obtain a scanner with good durability and shock resistance for practical use. Polyimide has both features, and the aluminum lead wires, connecting the moving-coils and fixed electrode pads, are more reliable, because they are located inside the hinge, where the stress caused by torsional deformation and atmospheric degradation are minimal. An electromagnetic actuator is used to satisfy the following requirements; a millimeter-sized mirror, resonant and galvanometric operation, and scan angle control. Scanner prototypes with two different specifications (i.e., fast scanner and slow scanner) were fabricated and characterized. Driven with a sinusoidal current of ±20 mA, the fast scanner and the slow one vibrated with an optical scan angle (&thetas;o) of 1° at the resonant frequency (fr) of 1.7 kHz and &thetas;o of 60° at fr of 72 Hz, respectively. Durability was demonstrated with a shock test of 2500 G and a life test of over 13 000 h. By substituting sputtered aluminum driving coil with electroplated copper coil, improved &thetas;o of 16.8° was obtained at fr of 2.7 kHz  相似文献   

9.
Two-Dimensional MEMS Scanner for Dual-Axes Confocal Microscopy   总被引:1,自引:0,他引:1  
In this paper, we present a novel 2-D microelectromechanical systems (MEMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution and long working distance, while also being well suited for miniaturization and integration into endoscopes for in vivo imaging. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer bonded on a SOI wafer) and is actuated by self-aligned vertical electrostatic combdrives. Maximum optical deflections of plusmn4.8deg and plusmn5.5deg are achieved in static mode for the outer and inner axes, respectively. Torsional resonant frequencies are at 500 Hz and 2.9 kHz for the outer and inner axes, respectively. The imaging capability of the MEMS scanner is successfully demonstrated in a breadboard setup. Reflectance images with a field of view of are achieved at 8 frames/s. The transverse resolutions are 3.94 mum and 6.68 mum for the horizontal and vertical dimensions, respectively.  相似文献   

10.
In this paper, a MEMS-based monolithic three-axis fiber-optic acceleration sensor is proposed, consisting of three optical fiber collimators and a three-axis acceleration sensing chip. The novel acceleration sensor includes two horizontal sensing units and one vertical sensing unit integrated on a single silicon substrate. Three optical fiber collimators are on the same side of the three-axis sensing chip, thus reducing the package size and cost. In each sensing unit, the micromirror, suspended on a pair of torsion beams, has a torsional angle in response to acceleration in sensing direction. The torsion angle is monitored using fiber-optic detection technique. The sensing system operation principle has been analyzed theoretically, its mechanical performances were simulated using the FEM simulation, and its fabricated process flow was proposed. Using bulk micromachining technologies, the horizontal and the vertical sensing units were successfully fabricated. Finally the individual fabricated sensing units were packaged and tested.  相似文献   

11.
This paper reports on novel polysilicon surface-micromachined one-dimensional (1-D) analog micromirror arrays fabricated using Sandia's ultraplanar multilevel MEMS technology-V (SUMMiT-V) process. Large continuous DC scan angle (23.6/spl deg/ optical) and low-operating voltage (6 V) have been achieved using vertical comb-drive actuators. The actuators and torsion springs are placed underneath the mirror (137/spl times/120 /spl mu/m/sup 2/) to achieve high fill-factor (91%). The measured resonant frequency of the mirror ranges from 3.4 to 8.1 kHz. The measured DC scanning characteristics and resonant frequencies agree well with theoretical values. The rise time is 120 /spl mu/s and the fall time is 380 /spl mu/s. The static scanning characteristics show good uniformity (相似文献   

12.
A novel and simple electromagnetic actuation (EMA) system having a permanent magnet (PM) type micro-robot and external coil pairs is proposed. The micro-robot is composed of PM and the newly proposed EMA system consists of only two coil pairs arranged along x- and y-axis, respectively, allowing different current intensity into each coil to derive torque and thrust force on the horizontal plane. Magnetic fields generated by the EMA system are analyzed through the finite element analysis and numerical results are compared with the theoretical analysis to verify the feasibility of the proposed system. A prototype system is manufactured and its performance is verified by comparison of magnetic flux values.  相似文献   

13.
A scanning micromirror suspended by a pair of V-shaped beams with vertical electrostatic comb drives was designed, modeled, fabricated and characterized. The dynamic analyses were carried out by both theory calculation and FEM simulation to obtain frequency response, stiffness characteristics, oscillation modes and their resonance frequencies. The device was fabricated using the silicon-on-insulator process by only two photolithography masks. Some problems during the process such as the micromirror distortion and the side sticking of the comb fingers were effectively solved by thermal annealing and alcohol-replacement methods, respectively. Based on the fabricated device, the typical scanning patterns for 1-D and 2-D operation were obtained. The experimental results reveal that the micromirror can work in resonant mode with the resonant frequency of 2.38 kHz. The maximum deflection angles can reach ±4.8°, corresponding to a total optical scanning range of 19.2° at a driving voltage of 21 V.  相似文献   

14.
This study designs, fabricates, and characterizes a novel micro electromagnetic actuator comprising a PDMS diaphragm, a polyimide-coated copper micro coil, and a permanent magnet. When an electrical current is passed through the micro coil, a magnetic force is induced between the coil and the magnet which causes the diaphragm to deflect, thereby creating an actuation effect. The experimental results demonstrate that the diaphragm deflection can be accurately controlled by regulating the current passed through the micro coil. It is shown that the maximum diaphragm deflection within elastic limits is 150 μm; obtained by passing a current of 0.6 A through a micro coil with a line width of 100 μm. The micro actuator proposed in this study is easily fabricated and is readily integrated with existing bio-medical chips due to its planar structure.  相似文献   

15.
This paper presents an effective method of linearizing the electrostatic transfer characteristics of micromachined two-dimensional (2-D) scanners. The orthogonal scan angles of surface micromachined polysilicon scanner are controlled by using quadrant electrodes for electrostatic actuation. By using a pair of differential voltages over a bias voltage, we could improve the distortion of projected images from 72% to only 13%. A theoretical model has been developed to predict the angle-voltage transfer characteristics of the 2-D scanner. The simulation results agree very well with experimental data. Differential voltage operation has been found to suppress the crosstalk of two orthogonal scan axes by both experiment and theoretically. We have found that a circular mirror is expected to have the lowest angular distortion compared with square mirrors. Perfect grid scanning pattern of small distortion (0.33%) has been successfully obtained by predistorting the driving voltages after calibration  相似文献   

16.
In this paper, we investigate theoretically the 3D laminar flow of an electrolyte in an annular duct driven by a Lorentz force. The duct is formed by two concentric electrically conducting cylinders limited by insulating bottom and top walls. A uniform magnetic field acts along the axial direction, while a potential difference is applied between the cylinders so that a radial electric current traverses the fluid. The interaction of the current and the magnetic field produces a Lorentz force that drives an azimuthal flow. The steady flow is solved using a Galerkin method with Bessel–Fourier series in the radial direction and trigonometric series along the vertical direction, allowing different combinations of slip conditions at the walls. The orthogonality of both series with the general boundary conditions of the third kind is used to find an analytic approximation. Velocity patterns and flow rates are explored by varying the aspect ratio of the duct and the gap between the cylinders, as well as the slippage at the walls. Results can provide useful information for optimization and design of annular microfluidic devices.  相似文献   

17.
This paper presents the design, optimization, fabrication, and test results of an electrothermally actuated tip-tilt-piston micromirror with a large optical aperture of 1 mm. The fabrication of the device is a combination of thin-film surface micromachining and bulk silicon micromachining based on silicon-on-insulator wafers. The device has 3-DOF of actuations, including rotations around two axes in the mirror plane, and out-of-plane piston actuation. The micromirror shows an optical scan range of plusmn30deg about both x- and y-axes and displaces 480 mum in the z-axis, all at dc voltages that are less than 8 V. Dynamic testing of the micromirror shows that the thermal response time of each actuator is about 10 ms. Resonant frequencies of the piston and rotation motion are 336 and 488 Hz, respectively. The unique structural design of the device ensures that there is no lateral shift for the piston motion and no rotation-axis shift for the rotation scanning. With the large tip-tilt-piston scan ranges and low driving voltage, this type of device is very suitable for biomedical imaging and laser beam steering applications.  相似文献   

18.
Magnetic micro-robots have been proposed for use in biomedical applications. These studies focus on locomotion control using a gradient, alternating, and rotating magnetic fields at the sub-micro scale. However, this study focuses on a basic mechanism of active locomotion for diagnostic robots. Furthermore, the digestive intestine in the human body has a complex path in which locomotion methods can become either swimming or walking according to the inner condition. Therefore, we propose a new simple mechanism for amphibious locomotion within a rotating magnetic field using the three-axis Helmholtz coil system. The proposed magnetic robot consists of NdFeB permanent spherical magnets, flexible silicone tubes, and legs. Successive changes of actuation of yaw and roll motions cause alternating and walking motions. Direction of movement is decided by rotating the direction of the magnetic field (clockwise or counter-clockwise). In addition, turning directions are decided by the plane of the rotating magnetic field. A magnetic torque between the rotating magnetic field and the magnetic moments produce a constant walking pattern similar to a trotting gait. In addition, an oscillatory motion of the flexible robot body can generate a thrust force in the liquid. Finally, through the various experiments, we evaluate the capability of the locomotion.  相似文献   

19.
We propose a new electromagnetic actuation (EMA) system for an intravascular microrobot with steering, locomotion and drilling functions. The EMA system consists of 3 pairs of Helmholtz coil and 1 pair of Maxwell coil. Generally, Helmholtz coils can align a microrobot in a desired direction by generating a uniform magnetic flux. If the uniform magnetic field generated by Helmholtz coils can be rotated, a microrobot with Helmholtz coils can also be rotated. On the other hand, a Maxwell coil, which generates a constant gradient magnetic flux, can supply the propulsion force for the microrobot. A microrobot actuated by the proposed EMA system has a spiral shaped body containing two magnets with different magnetization directions. With the proposed EMA system, the microrobot can move to the target region and perform drilling there by the precessional magnetic field of the Helmholtz coil pairs. The propulsion force for the microrobot is produced by the gradient magnetic field generated by the Maxwell coil pair. The moving velocity and the drilling performance of the microrobot can be increased by the propulsion force of the Maxwell coil pair. Through various tests, the feasibility and enhancement of the microrobot actuated by the proposed EMA system were verified.  相似文献   

20.
研制了一种无触点的十字形两维集成垂直霍尔器件 ,它对平行于芯片表面的磁场敏感。当与被测转角θ的物件轴向相连的径向永久磁铁转动时 ,传感器给出了相对于被测角度的两种信号电压 ,通过接口电路和PC机组成的非接触式测量系统把信号转换为转角θ。测试结果表明该角度传感器及其测量系统的测量精度在 0°~ 36 0°范围内可达± 1°  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号