首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Reinforcement Learning with Replacing Eligibility Traces   总被引:26,自引:0,他引:26  
The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds of trace assign credit to prior events according to how recently they occurred, but only the conventional trace gives greater credit to repeated events. Our analysis is for conventional and replace-trace versions of the offline TD(1) algorithm applied to undiscounted absorbing Markov chains. First, we show that these methods converge under repeated presentations of the training set to the same predictions as two well known Monte Carlo methods. We then analyze the relative efficiency of the two Monte Carlo methods. We show that the method corresponding to conventional TD is biased, whereas the method corresponding to replace-trace TD is unbiased. In addition, we show that the method corresponding to replacing traces is closely related to the maximum likelihood solution for these tasks, and that its mean squared error is always lower in the long run. Computational results confirm these analyses and show that they are applicable more generally. In particular, we show that replacing traces significantly improve performance and reduce parameter sensitivity on the "Mountain-Car" task, a full reinforcement-learning problem with a continuous state space, when using a feature-based function approximator.  相似文献   

2.
The asymptotic properties of temporal-difference learning algorithms with linear function approximation are analyzed in this paper. The analysis is carried out in the context of the approximation of a discounted cost-to-go function associated with an uncontrolled Markov chain with an uncountable finite-dimensional state-space. Under mild conditions, the almost sure convergence of temporal-difference learning algorithms with linear function approximation is established and an upper bound for their asymptotic approximation error is determined. The obtained results are a generalization and extension of the existing results related to the asymptotic behavior of temporal-difference learning. Moreover, they cover cases to which the existing results cannot be applied, while the adopted assumptions seem to be the weakest possible under which the almost sure convergence of temporal-difference learning algorithms is still possible to be demonstrated.  相似文献   

3.
Multiagent systems have had a powerful impact on the real world. Many of the systems it studies (air traffic, satellite coordination, rover exploration) are inherently multi-objective, but are often treated as single-objective problems within the research. A key concept within multiagent systems is that of credit assignment: quantifying an individual agent’s impact on the overall system performance. In this work,we extend the concept of credit assignment into multi-objective problems. We apply credit assignment through difference evaluations to two different policy selection paradigms to demonstrate their broad applicability. We first examine reinforcement learning, in which using difference evaluations improves performance by (i) increasing learning speed by up to 10\(\times \), (ii) producing solutions that dominate all solutions discovered by a traditional team-based credit assignment schema and (iii) losing only 0.61 % of dominated hypervolume in a scenario where 20 % of agents act in their own interests instead of the system’s interests (compared to a 43 % loss when using a traditional global reward in the same scenario). We then derive multiple methods for incorporating difference evaluations into a state-of-the-art multi-objective evolutionary algorithm, NSGA-II. Median performance of the NSGA-II considering credit assignment dominates best-case performance of NSGA-II not considering credit assignment in a multiagent multi-objective problem. Our results strongly suggest that in a multiagent multi-objective problem, proper credit assignment is at least as important to performance as the choice of multi-objective algorithm.  相似文献   

4.
Chih-Fong Tsai 《Knowledge》2009,22(2):120-127
For many corporations, assessing the credit of investment targets and the possibility of bankruptcy is a vital issue before investment. Data mining and machine learning techniques have been applied to solve the bankruptcy prediction and credit scoring problems. As feature selection is an important step to select more representative data from a given dataset in data mining to improve the final prediction performance, it is unknown that which feature selection method is better. Therefore, this paper aims at comparing five well-known feature selection methods used in bankruptcy prediction, which are t-test, correlation matrix, stepwise regression, principle component analysis (PCA) and factor analysis (FA) to examine their prediction performance. Multi-layer perceptron (MLP) neural networks are used as the prediction model. Five related datasets are used in order to provide a reliable conclusion. Regarding the experimental results, the t-test feature selection method outperforms the other ones by the two performance measurements.  相似文献   

5.
Temporal-difference learning is one of the most successful and broadly applied solutions to the reinforcement learning problem; it has been used to achieve master-level play in chess, checkers and backgammon. The key idea is to update a value function from episodes of real experience, by bootstrapping from future value estimates, and using value function approximation to generalise between related states. Monte-Carlo tree search is a recent algorithm for high-performance search, which has been used to achieve master-level play in Go. The key idea is to use the mean outcome of simulated episodes of experience to evaluate each state in a search tree. We introduce a new approach to high-performance search in Markov decision processes and two-player games. Our method, temporal-difference search, combines temporal-difference learning with simulation-based search. Like Monte-Carlo tree search, the value function is updated from simulated experience; but like temporal-difference learning, it uses value function approximation and bootstrapping to efficiently generalise between related states. We apply temporal-difference search to the game of 9×9 Go, using a million binary features matching simple patterns of stones. Without any explicit search tree, our approach outperformed an unenhanced Monte-Carlo tree search with the same number of simulations. When combined with a simple alpha-beta search, our program also outperformed all traditional (pre-Monte-Carlo) search and machine learning programs on the 9×9 Computer Go Server.  相似文献   

6.
The main aim of this paper is to predict NO and NO2 concentrations four days in advance comparing two artificial intelligence learning methods, namely, Multi-Layer Perceptron and Support Vector Machines on two kinds of spatial embedding of the temporal time series. Hourly values of NO and NO2 concentrations, as well as meteorological variables were recorded in a cross-road monitoring station with heavy traffic in Szeged in order to build a model for predicting NO and NO2 concentrations several hours in advance. The prediction of NO and NO2 concentrations was performed partly on the basis of their past values, and partly on the basis of temperature, humidity and wind speed data. Since NO can be predicted more accurately, its values were considered primarily when forecasting NO2. Time series prediction can be interpreted in a way that is suitable for artificial intelligence learning. Two effective learning methods, namely, Multi-Layer Perceptron and Support Vector Regression are used to provide efficient non-linear models for NO and NO2 times series predictions. Multi-Layer Perceptron is widely used to predict these time series, but Support Vector Regression has not yet been applied for predicting NO and NO2 concentrations. Grid search is applied to select the best parameters for the learners. To get rid of the curse of dimensionality of the spatial embedding of the time series Principal Component Analysis is taken to reduce the dimension of the embedded data. Three commonly used linear algorithms were considered as references: one-day persistence, average of several-day persistence and linear regression. Based on the good results of the average of several-day persistence, a prediction scheme was introduced, which forms weighted averages instead of simple ones. The optimization of these weights was performed with linear regression in linear case and with the learning methods mentioned in non-linear case. Concerning the NO predictions, the non-linear learning methods give significantly better predictions than the reference linear methods. In the case of NO2 the improvement of the prediction is considerable; however, it is less notable than for NO.  相似文献   

7.
Artificial neural networks (ANNs) have been popularly applied for stock market prediction, since they offer superlative learning ability. However, they often result in inconsistent and unpredictable performance in the prediction of noisy financial data due to the problems of determining factors involved in design. Prior studies have suggested genetic algorithm (GA) to mitigate the problems, but most of them are designed to optimize only one or two architectural factors of ANN. With this background, the paper presents a global optimization approach of ANN to predict the stock price index. In this study, GA optimizes multiple architectural factors and feature transformations of ANN to relieve the limitations of the conventional backpropagation algorithm synergistically. Experiments show our proposed model outperforms conventional approaches in the prediction of the stock price index.  相似文献   

8.
The main aim of this paper is to predict NO and NO2 concentrations 4 days in advance by comparing two artificial intelligence learning methods, namely, multi-layer perceptron and support vector machines, on two kinds of spatial embedding of the temporal time series. Hourly values of NO and NO2 concentrations, as well as meteorological variables were recorded in a cross-road monitoring station with heavy traffic in Szeged, in order to build a model for predicting NO and NO2 concentrations several hours in advance. The prediction of NO and NO2 concentrations was performed partly on the basis of their past values, and partly on the basis of temperature, humidity and wind speed data. Since NO can be predicted more accurately, its values were considered primarily when forecasting NO2. Time series prediction can be interpreted in a way that is suitable for artificial intelligence learning. Two effective learning methods, namely, multi-layer perceptron and support vector regression are used to provide efficient non-linear models for NO and NO2 time series predictions. Multi-layer perceptron is widely used to predict these time series, but support vector regression has not yet been applied for predicting NO and NO2 concentrations. Three commonly used linear algorithms were considered as references: 1-day persistence, average of several day persistence and linear regression. Based on the good results of the average of several day persistence, a prediction scheme was introduced, which forms weighted averages instead of simple ones. The optimization of these weights was performed with linear regression in linear case and with the learning methods mentioned in non-linear case. Concerning the NO predictions, the non-linear learning methods give significantly better predictions than the reference linear methods. In the case of NO2, the improvement of the prediction is considerable, however, it is less notable than for NO.  相似文献   

9.
Second-order training of adaptive critics for online process control.   总被引:1,自引:0,他引:1  
This paper deals with reinforcement learning for process modeling and control using a model-free, action- dependent adaptive critic (ADAC). A new modified recursive Levenberg Marquardt (RLM) training algorithm, called temporal difference RLM, is developed to improve the ADAC performance. Novel application results for a simulated continuously-stirred-tank-reactor process are included to show the superiority of the new algorithm to conventional temporal-difference stochastic backpropagation.  相似文献   

10.
Prioritized Sweeping: Reinforcement Learning with Less Data and Less Time   总被引:2,自引:0,他引:2  
We present a new algorithm,prioritized sweeping, for efficient prediction and control of stochastic Markov systems. Incremental learning methods such as temporal differencing and Q-learning have real-time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized sweeping aims for the best of both worlds. It uses all previous experiences both to prioritize important dynamic programming sweeps and to guide the exploration of state-space. We compare prioritized sweeping with other reinforcement learning schemes for a number of different stochastic optimal control problems. It successfully solves large state-space real-time problems with which other methods have difficulty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号