共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
黄鑫 《计算机光盘软件与应用》2012,(17):63-64
化学信息学、生物信息学、医学和社会科学等领域的科学研究的迅速发展积累了大量的图数据,如何从复杂和庞大的图数据中挖掘出有效信息成为数据挖掘领域的热点。通过介绍现阶段图数据挖掘技术的进展,特别是确定图挖掘技术中有代表性的频繁子图挖掘技术研究,讨论并预测了频繁子图挖掘研究的发展趋势。 相似文献
3.
图挖掘是数据挖掘的一个重要研究方向,而图挖掘主要集中在图数据集内频繁子图的挖掘。频繁子图挖掘技术的关键是建立有效机制减少冗余候选子图,以便高效计算和处理所需的频繁子图。提出了一种基于路径的频繁子图挖掘算法,该算法首先找出所有频繁边从而挖掘出频繁单路径,然后通过组合、双射和操作扩展出较多的频繁路径,再通过连接操作产生所有频繁子图候选集。通过定理证明了该算法的正确性和完整性,从理论上分析了该算法时间复杂度低于现有的算法,最后进行了2个图数据集实验,在候选集产生的数量和时间性能2方面验证了算法的优越性。 相似文献
4.
5.
AGM算法最早将Apriori思想应用到频繁子图挖掘中。AGM算法结构简单,以递归统计为基础,但面临庞大的图数据集时,由于存在子图同构的问题,在生成候选子图时容易产生很多冗余子图,使计算时间开销很大。基于AGM算法,针对候选子图生成这一环节对原算法进行改进,减少了冗余子图的生成,使改进后的算法在计算时间上具有高效性;测试了在不同最小支持度情况下改进方法的时间开销。实验结果表明改进算法比原算法缩短了计算时间,提高了频繁子图的挖掘效率。 相似文献
6.
7.
基于覆盖率的错误定位(Coverage Based Fault Localization,CBFL)方法旨在通过分析程序执行的结果预测错误信息,是一种行之有效的错误定位方法.然而,CBFL方法中代码覆盖率的独立统计忽略了程序内存在的复杂控制依赖和数据依赖,从而忽视了语句间的语义关系,影响错误定位的准确性.该文借助实例重点分析了基于代码覆盖率所得到的错误可疑度与错误代码的表现关系,指出现有CBFL方法的不足是片面地将基于覆盖率的错误可疑度直接作为错误代码判定的依据;提出程序失效规则及基于覆盖向量的覆盖信息分析模型,并在此模型基础之上,指出高可疑代码与错误代码在执行路径上的覆盖一致性,进而提出用以挖掘与高可疑代码相关联的错误代码的频繁集求解方法.以SIR基准程序为实验对象建立的受控实验结果表明,相比之前的研究,文中方法在一定程度上能够改进错误定位结果. 相似文献
8.
基于功能构件的软件复用方法 总被引:3,自引:0,他引:3
提出一种基于功能构件(FC)的软件复用方法,讨论所定义的功能构件的特点.以功能构件的设计思想为指导,设计了软件系统模型,建立了包括用户管理、用户操作稽核、权限管理、数据录入、电子数据导入、数据库管理维护和监控、界面风格控制、静态参数维护、数据查询、数据统计、工作流管理等功能构件的构件库,并用该复用方法完成了成本管理系统的开发.该复用方法可快速高效地实现新系统的搭建,能极大地节省软件开发的人力、物力投入,缩短开发周期,提高开发效率. 相似文献
9.
不同时刻的动态网络往往具有不同权重,针对加权动态网络的频繁模式挖掘,提出一种挖掘算法WGDM,它适用于加权动态社会网络、生物网络等方面的频繁模式挖掘。WGDM算法利用支持度的反单调性裁剪搜索空间,从而减少冗余候选子图,提高算法效率。通过实验测试了WGDM算法的性能,并根据中国实际股票市场网络,利用WGDM算法挖掘股票市场网络中有趣的频繁模式。 相似文献
10.
提出了基于频繁特征项集的文档聚类方法。对预处理后的文档,通过Apriori算法找出文档频繁特征项集,依据其子集中频繁特征词语对相关文档进行聚类,该方法能够有效降低特征项的维数,并能够通过频繁特征词语集合对聚类后的类别进行适当的描述。 相似文献
11.
静息态功能脑网络在脑疾病研究中得到了广泛的应用.然而传统的功能连接网络分析主要集中在确定图上,忽视了大脑区域之间的不确定信息.基于此,对不确定脑网络进行了研究,该方法不需要进行阈值选择,而且可以更准确地对功能连接网络进行建模.同时,将频繁子图挖掘应用到了不确定图上,并提出了几种新的判别性特征选择方法.分类结果显示,基于... 相似文献
12.
由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题--频繁子图挖掘.诸如化学、生物学、计算机网络和WWW等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间复杂性是O(n3·2n),其中,n是图集中的频繁边数.提出算法的时间复杂性是O〔2n·n2.5/logn〕,性能提高了O(√n·logn)倍.实验结果也证实了这一理论分析. 相似文献
13.
14.
频繁子图挖掘是数据挖掘领域的一个重要问题,并且有着广泛的应用。在Hadoop平台上实现了一种基于MapReduce的高效频繁子图挖掘算法Cloud-GFSG(cloud-global frequent subgraph)。该算法基于Apriori思想,在扩展边生成新的子图时,使用已经挖掘出的k-1阶的频繁子图生成k阶的频繁子图。同时,检查是否存在待扩展生成的子图,设定生成的频繁子图表示规则,保证了频繁子图信息的唯一性。较同类算法相比,该算法在挖掘频繁子图时更具通用性,并且在扩展边时避免产生大量的复制图,从而使得算法的正确性得以保证,且运行效率显著提高。 相似文献
15.
一种基于Apriori思想的频繁子图发现算法 总被引:1,自引:0,他引:1
如今,关联规则技术应用在许多非传统领域,许多已有的频繁项集搜索方法已经不适用了。一种解决的方法就是用图的形式表示这些领域的事务,然后利用基于图论的数据挖掘技术发现频繁子图。本文提出了一种基于Aproiri思想的频繁子图发现算法SLAGM,它可以有效地挖掘简单图中的频繁子图。实验证明,该算法在性能上优于另一种子图挖掘算法AGM。 相似文献
16.
This paper describes an original approach to semantics representation based on the use of a non-strict functional programming language with polymorphic typing. This approach provides a unified formalism needing no preprocessing or postprocessing to the functional language itself: parsing and semantics are declared naturally using function definition and evaluation is done by lambda application along the lines of Montague. We show that by changing only the model we can, after parsing, compute either the truth value of a sentence or its parse tree. 相似文献
17.
随着图数据收集技术在许多科学领域的发展,对图数据分类已成为机器学习和数据挖掘领域的重要课题.目前已经提出许多图分类方法.其中,一些图分类方法采用3步来构筑分类模型;一些图分类方法采用2步来构筑分类模型.这些方法在挖掘频繁子图或特征子图时,只考虑到子图的结构信息,而没有考虑到子图的嵌入信息.为此,在L-CCAM子图编码的基础上,提出了一种基于嵌入集的图分类方法.该方法采用基于类别信息的特征子图选择策略,不但考虑了子图的结构信息,而且在频繁子图挖掘过程中充分利用嵌入信息——嵌入集,通过一步即直接选择特征子图以及生成分类规则.实验结果表明:在对化合物数据分类时,在分类精度上该方法优于采用3步的图分类方法;在运行效率上该方法优于采用2步和3步的图数据分类方法. 相似文献
18.
频繁子图挖掘算法研究 总被引:3,自引:1,他引:2
图像能表达丰富语义,但增加了数据结构的复杂性和感兴趣子结构的挖掘难度。综合应用图论知识和数据挖掘的各种技术,对图像进行规范化编码,通过连接和扩展操作产生所有候选子图,引用嵌入集概念,计算候选子图的支持度和频繁度。提出频繁子图挖掘算法FSubgraphM,能从图数据库中挖掘频繁导出子图。 相似文献
19.
研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3~5个数量级,有很高的效率和可扩展性. 相似文献