首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new method suitable for general purpose graphics processing units to render self‐shadows on dynamic height fields under dynamic light environments in real‐time. Visibility for each point in the height field is determined as the exact horizon for a set of azimuthal directions in time linear in height field size and the number of directions. The surface is shaded using the horizon information and a high‐resolution light environment extracted on‐line from a high dynamic range cube map, allowing for detailed extended shadows. The desired accuracy for any geometric content and lighting complexity can be matched by choosing a suitable number of azimuthal directions. Our method is able to represent arbitrary features of both high‐ and low‐frequency, unifying hard and soft shadowing. We achieve 23 fps on 1024×1024 height fields with 64 azimuthal directions under a 256×64 environment lighting on an Nvidia GTX 280 GPU.  相似文献   

2.
    
Screen‐space ambient occlusion and obscurance have become established methods for rendering global illumination effects in real‐time applications. While they have seen a steady line of refinements, their computational complexity has remained largely unchanged and either undersampling artefacts or too high render times limit their scalability. In this paper we show how the fundamentally quadratic per‐pixel complexity of previous work can be reduced to a linear complexity. We solve obscurance in discrete azimuthal directions by performing line sweeps across the depth buffer in each direction. Our method builds upon the insight that scene points along each line can be incrementally inserted into a data structure such that querying for the largest occluder among the visited samples along the line can be achieved at an amortized constant cost. The obscurance radius therefore has no impact on the execution time and our method produces accurate results with smooth occlusion gradients in a few milliseconds per frame on commodity hardware.  相似文献   

3.
We propose an efficient method for editing bidirectional texture functions (BTFs) based on edit propagation scheme. In our approach, users specify sparse edits on a certain slice of BTF. An edit propagation scheme is then applied to propagate edits to the whole BTF data. The consistency of the BTF data is maintained by propagating similar edits to points with similar underlying geometry/reflectance. For this purpose, we propose to use view independent features including normals and reflectance features reconstructed from each view to guide the propagation process. We also propose an adaptive sampling scheme for speeding up the propagation process. Since our method needn't any accurate geometry and reflectance information, it allows users to edit complex BTFs with interactive feedback.  相似文献   

4.
Efficiently computing robust soft shadows is a challenging and time consuming task. On the one hand, the quality of image-based shadows is inherently limited by the discrete property of their framework. On the other hand, object-based algorithms do not exhibit such discretization issues but they can only efficiently deal with triangles having a constant transmittance factor. This paper addresses this limitation. We propose a general algorithm for the computation of robust and accurate soft shadows for triangles with a spatially varying transmittance. We then show how this technique can be efficiently included into object-based soft shadow algorithms. This results in unified object-based frameworks for computing robust direct shadows for both standard and perforated triangles in fully animated scenes.  相似文献   

5.
Anaglyph stereo provides a low‐budget solution to viewing stereoscopic images. However, it may suffer from ghosting and bad color reproduction. Here we address the first issue. We present a novel technique to perceptually calibrate an anaglyph stereoscopic system and to use the calibration to eliminate ghosting from the anaglyph image. We build a model based on luminance perception by the left and right eyes through the anaglyph glasses. We do not rely on power spectra of a monitor or on transmission spectra of anaglyph glasses, but show how the five parameters of our model can be captured with just a few measurements within a minute. We present how full color, half color, and gray anaglyphs can be rendered with our technique and compare them to the traditional method.  相似文献   

6.
High quality lighting is one of the challenges for interactive tree rendering. To this end, this paper presents a lighting model allowing real‐time rendering of trees with convincing indirect lighting. Rather than defining an empirical model to mimic lighting of real trees, we work at a lower level by modeling the spatial distribution of leaves and by assigning them probabilistic properties. We focus mainly on precise low‐frequency lighting that our eyes are more sensitive to and we add high‐frequency details afterwards. The resulting model is efficient and simple to implement on a GPU.  相似文献   

7.
Bitmask Soft Shadows   总被引:4,自引:0,他引:4  
Recently, several real-time soft shadow algorithms have been introduced which all compute a single shadow map and use its texels to obtain a discrete scene representation. The resulting micropatches are backprojected onto the light source and the light areas occluded by them get accumulated to estimate overall light occlusion. This approach ignores patch overlaps, however, which can lead to objectionable artifacts. In this paper, we propose to determine the visibility of the light source with a bit field where each bit tracks the visibility of a sample point on the light source. This approach not only avoids overlapping-related artifacts but offers a solution to the important occluder fusion problem. Hence, it also becomes possible to correctly incorporate information from multiple depth maps. In addition, a new interpretation of the shadow map data is suggested which often provides superior visual results. Finally, we show how the search area for potential occluders can be reduced substantially.  相似文献   

8.
    
In this paper we present a novel image based algorithm to render visually plausible anti‐aliased soft shadows in a robust and efficient manner. To achieve both high visual quality and high performance, it employs an accurate shadow map filtering method which guarantees smooth penumbrae and high quality anisotropic anti‐aliasing of the sharp transitions. Unlike approaches based on pre‐filtering approximations, our approach does not suffer from light bleeding or losing contact shadows. Discretization artefacts are avoided by creating virtual shadow maps on the fly according to a novel shadow map resolution prediction model. This model takes into account the screen space frequency of the penumbrae via a perceptual metric which has been directly established from an appropriate user study. Consequently, our algorithm always generates shadow maps with minimal resolutions enabling high performance while guarantying high quality. Thanks to this perceptual model, our algorithm can sometimes be faster at rendering soft shadows than hard shadows. It can render game‐like scenes at very high frame rates, and extremely large and complex scenes such as CAD models at interactive rates. In addition, our algorithm is highly scalable, and the quality versus performance trade‐off can be easily tweaked.  相似文献   

9.
    
Solving aliasing artifacts is an essential problem in shadow mapping approaches. Many works have been proposed, however, most of them focused on removing the texel‐level aliasing that results from the limited resolution of shadow maps. Little work has been done to solve the pixel‐level shadow aliasing that is produced by the rasterization on the screen plane. In this paper, we propose a fast, sub‐pixel antialiased shadowing algorithm to solve the pixel aliasing problem. Our work is based on the alias‐free shadow maps, which is capable of computing accurate per‐pixel shadow, and only incurs little cost to extend to sub‐pixel accuracy. Instead of direct supersampling the screen space, we take facets to approximate pixels in shadow testing. The shadowed area of one facet is rapidly evaluated by projecting blocker geometry onto a supersampled 2D occlusion mask with bitmasks fusion. It provides a sub‐pixel occlusion sampling so as to capture fine shadow details and features. Furthermore, we introduce the silhouette mask map that limits visibility evaluation to pixels only on the silhouette, which greatly reduces the computation cost. Our algorithm runs entirely on the GPU, achieving real‐time performance and is an order of magnitude faster than the brute‐force supersampling method to produce comparable 32× antialiased shadows.  相似文献   

10.
We present a real-time method for rendering global illumination effects from large area and environmental lights on dynamic height fields. In contrast to previous work, our method handles inter-reflections (indirect lighting) and non-diffuse surfaces. To reduce sampling, we construct one multi-resolution pyramid for height variation to compute direct shadows, and another pyramid for each indirect bounce of incident radiance to compute inter-reflections. The basic principle is to sample the points blocking direct light, or shedding indirect light, from coarser levels of the pyramid the farther away they are from a given receiver point. We unify the representation of visibility and indirect radiance at discrete azimuthal directions (i.e., as a function of a single elevation angle) using the concept of a "casting set" of visible points along this direction whose contributions are collected in the basis of normalized Legendre polynomials. This analytic representation is compact, requires no precomputation, and allows efficient integration to produce the spherical visibility and indirect radiance signals. Sub-sampling visibility and indirect radiance, while shading with full-resolution surface normals, further increases performance without introducing noticeable artifacts. Our method renders 512×512 height fields (> 500K triangles) at 36Hz.  相似文献   

11.
We present a real-time relighting and shadowing method for dynamic scenes with varying lighting, view and BRDFs. Our approach is based on a compact representation of reflectance data that allows for changing the BRDF at run-time and a data-driven method for accurately synthesizing self-shadows on articulated and deformable geometries. Unlike previous self-shadowing approaches, we do not rely on local blocking heuristics. We do not fit a model to the BRDF-weighted visibility, but rather only to the visibility that changes during animation. In this manner, our model is more compact than previous techniques and requires less computation both during fitting and at run-time. Our reflectance product operators can re-integrate arbitrary low-frequency view-dependent BRDF effects on-the-fly and are compatible with all previous dynamic visibility generation techniques as well as our own data-driven visibility model. We apply our reflectance product operators to three different visibility generation models, and our data-driven model can achieve framerates well over 300Hz.  相似文献   

12.
    
In this paper we present an image‐based algorithm to render visually plausible anti‐aliased soft shadows in real time. Our technique employs a new shadow pre‐filtering method based on an extended exponential shadow mapping theory. The algorithm achieves faithful contact shadows by adopting an optimal approximation to exponential shadow reconstruction function. Benefiting from a novel overflow free summed area table tile grid data structure, numerical stability is guaranteed and error filtering response is avoided. By integrating an adaptive anisotropic filtering method, the proposed algorithm can produce high quality smooth shadows both in large penumbra areas and in high frequency sharp transitions, meanwhile guarantee cheap memory consumption and high performance.  相似文献   

13.
Light transport is often characterized within a high‐dimensional space although practitioners have long known that it commonly behaves as a much lower‐dimensional phenomenon. We study the effective dimension of light transport over a neighborhood on the scene manifold and show that under plausible assumptions the dimensionality is characterized by the spectrum of the spatio‐spectral concentration problem. This allows us to improve existing estimates for the dimension in computer graphics using a more insightful derivation and for the first time we obtain optimal representations. The relevance of our results for existing rendering applications is discussed.  相似文献   

14.
In computer cinematography, artists routinely use non‐physical lighting models to achieve desired appearances. This paper presents BendyLights, a non‐physical lighting model where light travels nonlinearly along splines, allowing artists to control light direction and shadow position at different points in the scene independently. Since the light deformation is smoothly defined at all world‐space positions, the resulting non‐physical lighting effects remain spatially consistent, avoiding the frequent incongruences of many non‐physical models. BendyLights are controlled simply by reshaping splines, using familiar interfaces, and require very few parameters. BendyLight control points can be keyframed to support animated lighting effects. We demonstrate BendyLights both in a realtime rendering system for editing and a production renderer for final rendering, where we show that BendyLights can also be used with global illumination.  相似文献   

15.
We propose a method that computes a piecewise constant approximation of a function defined on a mesh. The approximation is associated with the cells of a restricted Voronoï diagram. Our method optimizes an objective function measuring the quality of the approximation. This objective function depends on the placement of the samples that define the restricted Voronoï diagram and their associated function values. We study the continuity of the objective function, derive the closed‐form expression of its derivatives and use them to design a numerical solution mechanism. The method can be applied to a function that has discontinuities, and the result aligns the boundaries of the Voronoï cells with the discontinuities. Some examples are shown, suggesting potential applications in image vectorization and compact representation of lighting.  相似文献   

16.
Noisy volumetric details like clouds, grounds, plaster, bark, roughcast, etc. are frequently encountered in nature and bring an important contribution to the realism of outdoor scenes. We introduce a new interactive approach, easing the creation of procedural representations of “stochastic” volumetric details by using a single example photograph. Instead of attempting to reconstruct an accurate geometric representation from the photograph, we use a stochastic multi‐scale approach that fits parameters of a multi‐layered noise‐based 3D deformation model, using a multi‐resolution filter banks error metric. Once computed, visually similar details can be applied to arbitrary objects with a high degree of visual realism, since lighting and parallax effects are naturally taken into account. Our approach is inspired by image‐based techniques. In practice, the user supplies a photograph of an object covered by noisy details, provides a corresponding coarse approximation of the shape of this object as well as an estimated lighting condition (generally a light source direction). Our system then determines the corresponding noise‐based representation as well as some diffuse, ambient, specular and semi‐transparency reflectance parameters. The resulting details are fully procedural and, as such, have the advantage of extreme compactness, while they can be infinitely extended without repetition in order to cover huge surfaces.  相似文献   

17.
    
We present an approach for editing shadows in all‐frequency lighting environments. To support artistic control, we propose to decouple shadowing from lighting and focus on providing intuitive controls to edit the former. To accomplish this task, we precompute and store scene visibility information separately from lighting and BRDFs and allow artists to edit visibility directly, by providing operations to select shadows and edit their shape. To facilitate a wider range of editing operations, we generalize visibility from binary to three‐channel oating point quantities and introduce a novel shadow representation based on computation of visibility ratios between the original render and the edited one. We demonstrate our results for diffuse and glossy surfaces, still scenes and animations.  相似文献   

18.
19.
In this paper, we present a novel exemplar‐based technique for the interpolation between two textures that combines patch‐based and statistical approaches. Motivated by the notion of texture as a largely local phenomenon, we warp and blend small image neighborhoods prior to patch‐based texture synthesis. In addition, interpolating and enforcing characteristic image statistics faithfully handles high frequency detail. We are able to create both intermediate textures as well as continuous transitions. In contrast to previous techniques computing a global morphing transformation on the entire input exemplar images, our localized and patch‐based approach allows us to successfully interpolate between textures with considerable differences in feature topology for which no smooth global warping field exists.  相似文献   

20.
This paper proposes a method for efficiently rendering indirect highlights. Indirect highlights are caused by the primary light source reflecting off two or more glossy surfaces. Accurately simulating such highlights is important to convey the realistic appearance of materials such as chrome and shiny metal. Our method models the glossy BRDF at a surface point as a directional distribution, using a spherical von Mises‐Fisher (vMF) distribution. As our main contribution, we merge multiple vMFs into a combined multimodal distribution. This effectively creates a filtered radiance response function, allowing us to efficiently estimate indirect highlights. We demonstrate our method in a near‐interactive application for rendering scenes with highly glossy objects. Our results produce realistic reflections under both local and environment lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号