首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we propose a controllable embedding method for high‐ and low‐dimensional geometry processing through sparse matrix eigenanalysis. Our approach is equally suitable to perform non‐linear dimensionality reduction on big data, or to offer non‐linear shape editing of 3D meshes and pointsets. At the core of our approach is the construction of a multi‐Laplacian quadratic form that is assembled from local operators whose kernels only contain locally‐affine functions. Minimizing this quadratic form provides an embedding that best preserves all relative coordinates of points within their local neighborhoods. We demonstrate the improvements that our approach brings over existing nonlinear dimensionality reduction methods on a number of datasets, and formulate the first eigen‐based as‐rigid‐as‐possible shape deformation technique by applying our affine‐kernel embedding approach to 3D data augmented with user‐imposed constraints on select vertices.  相似文献   

2.
We present a sparse optimization framework for extracting sparse shape priors from a collection of 3D models. Shape priors are defined as point‐set neighborhoods sampled from shape surfaces which convey important information encompassing normals and local shape characterization. A 3D shape model can be considered to be formed with a set of 3D local shape priors, while most of them are likely to have similar geometry. Our key observation is that the local priors extracted from a family of 3D shapes lie in a very low‐dimensional manifold. Consequently, a compact and informative subset of priors can be learned to efficiently encode all shapes of the same family. A comprehensive library of local shape priors is first built with the given collection of 3D models of the same family. We then formulate a global, sparse optimization problem which enforces selecting representative priors while minimizing the reconstruction error. To solve the optimization problem, we design an efficient solver based on the Augmented Lagrangian Multipliers method (ALM). Extensive experiments exhibit the power of our data‐driven sparse priors in elegantly solving several high‐level shape analysis applications and geometry processing tasks, such as shape retrieval, style analysis and symmetry detection.  相似文献   

3.
Two‐parameter families of straight lines (line congruences) are implicitly present in graphics and geometry processing in several important ways including lighting and shape analysis. In this paper we make them accessible to optimization and geometric computing, by introducing a general discrete version of congruences based on piecewise‐linear correspondences between triangle meshes. Our applications of congruences are based on the extraction of a so‐called torsion‐free support structure, which is a procedure analogous to remeshing a surface along its principal curvature lines. A particular application of such structures are freeform shading and lighting systems for architecture. We combine interactive design of such systems with global optimization in order to satisfy geometric constraints. In this way we explore a new area where architecture can greatly benefit from graphics.  相似文献   

4.
In this paper, we propose to consider the adjoint operators of functional maps, and demonstrate their utility in several tasks in geometry processing. Unlike a functional map, which represents a correspondence simply using the pull‐back of function values, the adjoint operator reflects both the map and its distortion with respect to given inner products. We argue that this property of adjoint operators and especially their relation to the map inverse under the choice of different inner products, can be useful in applications including bi‐directional shape matching, shape exploration, and pointwise map recovery among others. In particular, in this paper, we show that the adjoint operators can be used within the cycle‐consistency framework to encode and reveal the presence or lack of consistency between distortions in a collection, in a way that is complementary to the previously used purely map‐based consistency measures. We also show how the adjoint can be used for matching pairs of shapes, by accounting for maps in both directions, can help in recovering point‐to‐point maps from their functional counterparts, and describe how it can shed light on the role of functional basis selection.  相似文献   

5.
We present a novel framework for polyhedral mesh editing with face‐based projective maps that preserves planarity by definition. Such meshes are essential in the field of architectural design and rationalization. By using homogeneous coordinates to describe vertices, we can parametrize the entire shape space of planar‐preserving deformations with bilinear equations. The generality of this space allows for polyhedral geometric processing methods to be conducted with ease. We demonstrate its usefulness in planar‐quadrilateral mesh subdivision, a resulting multi‐resolution editing algorithm, and novel shape‐space exploration with prescribed transformations. Furthermore, we show that our shape space is a discretization of a continuous space of conjugate‐preserving projective transformation fields on surfaces. Our shape space directly addresses planar‐quad meshes, on which we put a focus, and we further show that our framework naturally extends to meshes with faces of more than four vertices as well.  相似文献   

6.
We propose a framework for 3D geometry processing that provides direct access to surface curvature to facilitate advanced shape editing, filtering, and synthesis algorithms. The central idea is to map a given surface to the curvature domain by evaluating its principle curvatures, apply filtering and editing operations to the curvature distribution, and reconstruct the resulting surface using an optimization approach. Our system allows the user to prescribe arbitrary principle curvature values anywhere on the surface. The optimization solves a nonlinear least‐squares problem to find the surface that best matches the desired target curvatures while preserving important properties of the original shape. We demonstrate the effectiveness of this processing metaphor with several applications, including anisotropic smoothing, feature enhancement, and multi‐scale curvature editing.  相似文献   

7.
Constructing locally injective mappings for 2D triangular meshes is vital in applications such as deformations. In such a highly constrained optimization, the prescribed tessellation may impose strong restriction on the solution. As a consequence, the feasible region may be too small to contain an ideal solution, which leads to problems of slow convergence, poor solution, or even that no solution can be found. We propose to integrate adaptive remeshing into interior point method to solve this issue. We update the vertex positions via a parameter‐free relaxation enhanced geometry optimization, and then use edge‐flip operations to reduce the residual and keep a reasonable condition number for better convergence. For more robustness, when the iteration of interior point method terminates but leaves the positional constraints unsatisfied, we estimate the edges in the current tessellation that block vertices moving based on the convergence information of the optimization, and then split neighboring edges to break the restriction. The results show that our method has better performance than the solely geometric optimization approaches, especially for extreme deformations.  相似文献   

8.
We present a geometry processing framework that allows direct manipulation or preservation of positional, metric, and curvature constraints anywhere on the surface of a geometric model. Target values for these properties can be specified point-wise or as integrated quantities over curves and surface patches embedded in the shape. For example, the user can draw several curves on the surface and specify desired target lengths, manipulate the normal curvature along these curves, or modify the area or principal curvature distribution of arbitrary surface patches. This user input is converted into a set of non-linear constraints. A global optimization finds the new deformed surface that best satisfies the constraints, while minimizing adaptable measures for metric and curvature distortion that provide explicit control of the deformation semantics. We illustrate how this approach enables flexible surface processing and shape editing operations not available in current systems.  相似文献   

9.
Functions that optimize Laplacian‐based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher‐order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle‐based shape deformation, controllable color diffusion, and topologically‐constrained data smoothing.  相似文献   

10.
Deep neural networks provide a promising tool for incorporating semantic information in geometry processing applications. Unlike image and video processing, however, geometry processing requires handling unstructured geometric data, and thus data representation becomes an important challenge in this framework. Existing approaches tackle this challenge by converting point clouds, meshes, or polygon soups into regular representations using, e.g., multi‐view images, volumetric grids or planar parameterizations. In each of these cases, geometric data representation is treated as a fixed pre‐process that is largely disconnected from the machine learning tool. In contrast, we propose to optimize for the geometric representation during the network learning process using a novel metric alignment layer. Our approach maps unstructured geometric data to a regular domain by minimizing the metric distortion of the map using the regularized Gromov–Wasserstein objective. This objective is parameterized by the metric of the target domain and is differentiable; thus, it can be easily incorporated into a deep network framework. Furthermore, the objective aims to align the metrics of the input and output domains, promoting consistent output for similar shapes. We show the effectiveness of our layer within a deep network trained for shape classification, demonstrating state‐of‐the‐art performance for nonrigid shapes.  相似文献   

11.
We present an efficient algorithm for object‐space proximity queries between multiple deformable triangular meshes. Our approach uses the rasterization capabilities of the GPU to produce an image‐space representation of the vertices. Using this image‐space representation, inter‐object vertex‐triangle distances and closest points lying under a user‐defined threshold are computed in parallel by conservative rasterization of bounding primitives and sorted using atomic operations. We additionally introduce a similar technique to detect penetrating vertices. We show how mechanisms of modern GPUs such as mipmapping, Early‐Z and Early‐Stencil culling can optimize the performance of our method. Our algorithm is able to compute dense proximity information for complex scenes made of more than a hundred thousand triangles in real time, outperforming a CPU implementation based on bounding volume hierarchies by more than an order of magnitude.  相似文献   

12.
We present a system for recording a live dynamic facial performance, capturing highly detailed geometry and spatially varying diffuse and specular reflectance information for each frame of the performance. The result is a reproduction of the performance that can be rendered from novel viewpoints and novel lighting conditions, achieving photorealistic integration into any virtual environment. Dynamic performances are captured directly, without the need for any template geometry or static geometry scans, and processing is completely automatic, requiring no human input or guidance. Our key contributions are a heuristic for estimating facial reflectance information from gradient illumination photographs, and a geometry optimization framework that maximizes a principled likelihood function combining multi‐view stereo correspondence and photometric stereo, using multi‐resolution belief propagation. The output of our system is a sequence of geometries and reflectance maps, suitable for rendering in off‐the‐shelf software. We show results from our system rendered under novel viewpoints and lighting conditions, and validate our results by demonstrating a close match to ground truth photographs.  相似文献   

13.
This work concerns a novel study in the field of image‐to‐geometry registration. Our approach takes inspiration from medical imaging, in particular from multi‐modal image registration. Most of the algorithms developed in this domain, where the images to register come from different sensors (CT, X‐ray, PET), are based on Mutual Information, a statistical measure of non‐linear correlation between two data sources. The main idea is to use mutual information as a similarity measure between the image to be registered and renderings of the model geometry, in order to drive the registration in an iterative optimization framework. We demonstrate that some illumination‐related geometric properties, such as surface normals, ambient occlusion and reflection directions can be used for this purpose. After a comprehensive analysis of such properties we propose a way to combine these sources of information in order to improve the performance of our automatic registration algorithm. The proposed approach can robustly cover a wide range of real cases and can be easily extended.  相似文献   

14.
In many geometry processing applications, it is required to improve an initial mesh in terms of multiple quality objectives. Despite the availability of several mesh generation algorithms with provable guarantees, such generated meshes may only satisfy a subset of the objectives. The conflicting nature of such objectives makes it challenging to establish similar guarantees for each combination, e.g., angle bounds and vertex count. In this paper, we describe a versatile strategy for mesh improvement by interpreting quality objectives as spatial constraints on resampling and develop a toolbox of local operators to improve the mesh while preserving desirable properties. Our strategy judiciously combines smoothing and transformation techniques allowing increased flexibility to practically achieve multiple objectives simultaneously. We apply our strategy to both planar and surface meshes demonstrating how to simplify Delaunay meshes while preserving element quality, eliminate all obtuse angles in a complex mesh, and maximize the shortest edge length in a Voronoi tessellation far better than the state‐of‐the‐art.  相似文献   

15.
Differential Representations for Mesh Processing   总被引:7,自引:0,他引:7  
Surface representation and processing is one of the key topics in computer graphics and geometric modeling, since it greatly affects the range of possible applications. In this paper we will present recent advances in geometry processing that are related to the Laplacian processing framework and differential representations. This framework is based on linear operators defined on polygonal meshes, and furnishes a variety of processing applications, such as shape approximation and compact representation, mesh editing, watermarking and morphing. The core of the framework is the definition of differential coordinates and new bases for efficient mesh geometry representation, based on the mesh Laplacian operator.  相似文献   

16.
Spectral Geometry Processing with Manifold Harmonics   总被引:4,自引:0,他引:4  
We present an explicit method to compute a generalization of the Fourier Transform on a mesh. It is well known that the eigenfunctions of the Laplace Beltrami operator (Manifold Harmonics) define a function basis allowing for such a transform. However, computing even just a few eigenvectors is out of reach for meshes with more than a few thousand vertices, and storing these eigenvectors is prohibitive for large meshes. To overcome these limitations, we propose a band‐by‐band spectrum computation algorithm and an out‐of‐core implementation that can compute thousands of eigenvectors for meshes with up to a million vertices. We also propose a limited‐memory filtering algorithm, that does not need to store the eigenvectors. Using this latter algorithm, specific frequency bands can be filtered, without needing to compute the entire spectrum. Finally, we demonstrate some applications of our method to interactive convolution geometry filtering. These technical achievements are supported by a solid yet simple theoretic framework based on Discrete Exterior Calculus (DEC). In particular, the issues of symmetry and discretization of the operator are considered with great care.  相似文献   

17.
In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm.We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimization subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a unified way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved efficiently and accurately.Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system offers full control over the exploration process, by providing direct access to the specification of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces.  相似文献   

18.
19.
We offer a framework for editing and modeling of planar meshes, focusing on planar quad, and hexagonal‐dominant meshes, which are held in high demand in the field of architectural design. Our framework manipulates these meshes by affine maps that are assigned per‐face, and which naturally ensure the planarity of these faces throughout the process, resulting in a linear subspace of compatible planar deformations for any given mesh. Our modeling metaphors include classical handle‐based editing, mesh interpolation, and shape‐space exploration, all of which allow for an intuitive way to produce new polyhedral and near‐polyhedral meshes by editing.  相似文献   

20.
We provide a method for improving the parameterization of patching schemes that approximate Catmull‐Clark subdivision surfaces, such that the new parameterization conforms better to that of the original subdivision surface. We create this reparameterization in real‐time using a method that only depends on the topology of the surface and is independent of the surface's geometry. Our method can handle patches with more than one extraordinary vertex and avoids the combinatorial increase in both complexity and storage associated with multiple extraordinary vertices. Moreover, the reparameterization function is easy to implement and fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号