首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a novel framework that allows for a flexible and an efficient retrieval of motion capture data in huge databases. The method first converts an action sequence into a novel representation, i.e. the Self‐Similarity Matrix (SSM), which is based on the notion of self‐similarity. This conversion of the motion sequences into compact and low‐rank subspace representations greatly reduces the spatiotemporal dimensionality of the sequences. The SSMs are then used to construct order‐3 tensors, and we propose a low‐rank decomposition scheme that allows for converting the motion sequence volumes into compact lower dimensional representations, without losing the nonlinear dynamics of the motion manifold. Thus, unlike existing linear dimensionality reduction methods that distort the motion manifold and lose very critical and discriminative components, the proposed method performs well even when inter‐class differences are small or intra‐class differences are large. In addition, the method allows for an efficient retrieval and does not require the time‐alignment of the motion sequences. We evaluate the performance of our retrieval framework on the CMU mocap dataset under two experimental settings, both demonstrating promising retrieval rates.  相似文献   

2.
We present SmallWorlds, a visual interactive graph‐based interface that allows users to specify, refine and build item‐preference profiles in a variety of domains. The interface facilitates expressions of taste through simple graph interactions and these preferences are used to compute personalized, fully transparent item recommendations for a target user. Predictions are based on a collaborative analysis of preference data from a user's direct peer group on a social network. We find that in addition to receiving transparent and accurate item recommendations, users also learn a wealth of information about the preferences of their peers through interaction with our visualization. Such information is not easily discoverable in traditional text based interfaces. A detailed analysis of our design choices for visual layout, interaction and prediction techniques is presented. Our evaluations discuss results from a user study in which SmallWorlds was deployed as an interactive recommender system on Facebook.  相似文献   

3.
4.
We propose the first system for live dynamic augmentation of human faces. Using projector‐based illumination, we alter the appearance of human performers during novel performances. The key challenge of live augmentation is latency — an image is generated according to a specific pose, but is displayed on a different facial configuration by the time it is projected. Therefore, our system aims at reducing latency during every step of the process, from capture, through processing, to projection. Using infrared illumination, an optically and computationally aligned high‐speed camera detects facial orientation as well as expression. The estimated expression blendshapes are mapped onto a lower dimensional space, and the facial motion and non‐rigid deformation are estimated, smoothed and predicted through adaptive Kalman filtering. Finally, the desired appearance is generated interpolating precomputed offset textures according to time, global position, and expression. We have evaluated our system through an optimized CPU and GPU prototype, and demonstrated successful low latency augmentation for different performers and performances with varying facial play and motion speed. In contrast to existing methods, the presented system is the first method which fully supports dynamic facial projection mapping without the requirement of any physical tracking markers and incorporates facial expressions.  相似文献   

5.
We present an approach to improve the search efficiency for near‐optimal motion synthesis using motion graphs. An optimal or near‐optimal path through a motion graph often leads to the most intuitive result. However, finding such a path can be computationally expensive. Our main contribution is a bidirectional search algorithm. We dynamically divide the search space evenly and merge two search trees to obtain the final solution. This cuts the maximum search depth almost in half and leads to significant speedup. To illustrate the benefits of our approach, we present an interactive sketching interface that allows users to specify complex motions quickly and intuitively.  相似文献   

6.
We present novel visual and interactive techniques for exploratory visualization of animal kinematics using instantaneous helical axes (IHAs). The helical axis has been used in orthopedics, biomechanics, and structural mechanics as a construct for describing rigid body motion. Within biomechanics, recent imaging advances have made possible accurate high‐speed measurements of individual bone positions and orientations during experiments. From this high‐speed data, instantaneous helical axes of motion may be calculated. We address questions of effective interactive, exploratory visualization of this high‐speed 3D motion data. A 3D glyph that encodes all parameters of the IHA in visual form is presented. Interactive controls are used to examine the change in the IHA over time and relate the IHA to anatomical features of interest selected by a user. The techniques developed are applied to a stereoscopic, interactive visualization of the mechanics of pig mastication and assessed by a team of evolutionary biologists who found interactive IHA‐based analysis a useful addition to more traditional motion analysis techniques.  相似文献   

7.
This paper presents an efficient technique for synthesizing motions by stitching, or splicing, an upper‐body motion retrieved from a motion space on top of an existing lower‐body locomotion of another motion. Compared to the standard motion splicing problem, motion space splicing imposes new challenges as both the upper and lower body motions might not be known in advance. Our technique is the first motion (space) splicing technique that propagates temporal and spatial properties of the lower‐body locomotion to the newly generated upper‐body motion and vice versa. Whereas existing techniques only adapt the upper‐body motion to fit the lower‐body motion, our technique also adapts the lower‐body locomotion based on the upper body task for a more coherent full‐body motion. In this paper, we will show that our decoupled approach is able to generate high‐fidelity full‐body motion for interactive applications such as games.  相似文献   

8.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

9.
Many data‐driven animation techniques are capable of producing high quality motions of human characters. Few techniques, however, are capable of generating motions that are consistent with physically simulated environments. Physically simulated characters, in contrast, are automatically consistent with the environment, but their motions are often unnatural because they are difficult to control. We present a model‐predictive controller that yields natural motions by guiding simulated humans toward real motion data. During simulation, the predictive component of the controller solves a quadratic program to compute the forces for a short window of time into the future. These forces are then applied by a low‐gain proportional‐derivative component, which makes minor adjustments until the next planning cycle. The controller is fast enough for interactive systems such as games and training simulations. It requires no precomputation and little manual tuning. The controller is resilient to mismatches between the character dynamics and the input motion, which allows it to track motion capture data even where the real dynamics are not known precisely. The same principled formulation can generate natural walks, runs, and jumps in a number of different physically simulated surroundings.  相似文献   

10.
Automatic camera control for scenes depicting human motion is an imperative topic in motion capture base animation, computer games, and other animation based fields. This challenging control problem is complex and combines both geometric constraints, visibility requirements, and aesthetic elements. Therefore, existing optimization‐based approaches for human action overview are often too demanding for online computation. In this paper, we introduce an effective automatic camera control which is extremely efficient and allows online performance. Rather than optimizing a complex quality measurement, at each time it selects one active camera from a multitude of cameras that render the dynamic scene. The selection is based on the correlation between each view stream and the human motion in the scene. Two factors allow for rapid selection among tens of candidate views in real‐time, even for complex multi‐character scenes: the efficient rendering of the multitude of view streams, and optimized calculations of the correlations using modified CCA. In addition to the method's simplicity and speed, it exhibits good agreement with both cinematic idioms and previous human motion camera control work. Our evaluations show that the method is able to cope with the challenges put forth by severe occlusions, multiple characters and complex scenes.  相似文献   

11.
In fluid animation, wake is one of the most important phenomena usually seen when an object is moving relative to the flow. However, in current shallow water simulation for interactive applications, this effect is greatly smeared out. In this paper, we present a method to efficiently synthesize these wakes. We adopt a generalized SPH method for shallow water simulation and two way solid fluid coupling. In addition, a 2D discrete vortex method is used to capture the detailed wake motions behind an obstacle, enriching the motion of SWE simulation. Our method is highly efficient since only 2D simulation is required. Moreover, by using a physically inspired procedural approach for particle seeding, DVM particles are only created in the wake region. Therefore, very few particles are required while still generating realistic wake patterns. When coupled with SWE, we show that these patterns can be seen using our method with marginal overhead.  相似文献   

12.
Skinning is a simple yet popular deformation technique combining compact storage with efficient hardware accelerated rendering. While skinned meshes (such as virtual characters) are traditionally created by artists, previous work proposes algorithms to construct skinning automatically from a given vertex animation. However, these methods typically perform well only for a certain class of input sequences and often require long pre‐processing times. We present an algorithm based on iterative coordinate descent optimization which handles arbitrary animations and produces more accurate approximations than previous techniques, while using only standard linear skinning without any modifications or extensions. To overcome the computational complexity associated with the iterative optimization, we work in a suitable linear subspace (obtained by quick approximate dimensionality reduction) and take advantage of the typically very sparse vertex weights. As a result, our method requires about one or two orders of magnitude less pre‐processing time than previous methods.  相似文献   

13.
We present a new method to create and preserve the turbulent details generated around moving objects in SPH fluid. In our approach, a high‐resolution overlapping grid is bounded to each object and translates with the object. The turbulence formation is modeled by resolving the local flow around objects using a hybrid SPH‐FLIP method. Then these vortical details are carried on SPH particles flowing through the local region and preserved in the global field in a synthetic way. Our method provides a physically plausible way to model the turbulent details around both rigid and deformable objects in SPH fluid, and can efficiently produce animations of complex gaseous phenomena with rich visual details.  相似文献   

14.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

15.
The visual simulation of natural phenomena has been widely studied. Although several methods have been proposed to simulate melting, the flows of meltwater drops on the surfaces of objects are not taken into account. In this paper, we propose a particle‐based method for the simulation of the melting and freezing of ice objects and the interactions between ice and fluids. To simulate the flow of meltwater on ice and the formation of water droplets, a simple interfacial tension is proposed, which can be easily incorporated into common particle‐based simulation methods such as Smoothed Particle Hydrodynamics. The computations of heat transfer, the phase transition between ice and water, the interactions between ice and fluids, and the separation of ice due to melting are further accelerated by implementing our method using CUDA. We demonstrate our simulation and rendering method for depicting melting ice at interactive frame‐rates.  相似文献   

16.
Producing traditional animation is a laborious task where the key drawings are first drawn by artists and thereafter inbetween drawings are created, whether it is by hand or computer‐assisted. Auto‐inbetweening of these 2D key drawings by computer is a non‐trivial task as 3D depths are missing. An alternate approach is to generate all the drawings by extracting lines directly from animated 3D models frame by frame, concatenating and rendering them together into an animation. However, animation quality generated using this straightforward method bears two problems. Firstly, the animation contains unsatisfactory visual artifacts such as line flickering and popping. This is especially pronounced when the lines are extracted using high‐order derivatives, such as ridges and valleys, from 3D models represented in triangle meshes. Secondly, there is a lack of temporal continuity as each drawing is generated without taking its neighboring drawings into consideration. In this paper, we propose an improved approach over the straightforward method by transferring extracted 3D line drawings of each frame into individual 3D lines and processing them along the time domain. Our objective is to minimize the visual artifacts and incorporate temporal relationship of individual lines throughout the entire animation sequence. This is achieved by creating correspondent trajectory of each line from each frame and applying global optimization on each trajectory. To realize this target, we present a fully automatic novel approach, which consists of (1) a line matching algorithm, (2) an optimizing algorithm, taking into account both the variations of numbers and lengths of 3D lines in each frame, and (3) a robust tracing method for transferring collections of line segments extracted from the 3D models into individual lines. We evaluate our approach on several animated model sequences to demonstrate its effectiveness in producing line drawing animations with temporal coherence.  相似文献   

17.
3D video billboard clouds reconstruct and represent a dynamic three-dimensional scene using displacement-mapped billboards. They consist of geometric proxy planes augmented with detailed displacement maps and combine the generality of geometry-based 3D video with the regularization properties of image-based 3D video. 3D video billboards are an image-based representation placed in the disparity space of the acquisition cameras and thus provide a regular sampling of the scene with a uniform error model. We propose a general geometry filtering framework which generates time-coherent models and removes reconstruction and quantization noise as well as calibration errors. This replaces the complex and time-consuming sub-pixel matching process in stereo reconstruction with a bilateral filter. Rendering is performed using a GPU-accelerated algorithm which generates consistent view-dependent geometry and textures for each individual frame. In addition, we present a semi-automatic approach for modeling dynamic three-dimensional scenes with a set of multiple 3D video billboards clouds.  相似文献   

18.
Existing synthesis methods for closely interacting virtual characters relied on user‐specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs.  相似文献   

19.
The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more visually pleasing animation that is a closer approximation to the actual skin deformations of the human body. We use a data‐driven approach and collect ground truth skin deformation data with an optical motion capture system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers during movement sequences and discover that adding one extra joint around the shoulder improves the resulting animation qualitatively and quantitatively yielding a marker set of approximately 70 markers for the complete skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with ground truth data as well as with recorded video. We show its practicality by integrating it with the conventional rendering/animation pipeline.  相似文献   

20.
We propose a fast and effective technique to improve sub‐grid visual details of the grid based fluid simulation. Our method procedurally synthesizes the flow fields coming from the incompressible Navier‐Stokes solver and the vorticity fields generated by vortex particle method for sub‐grid turbulence. We are able to efficiently animate smoke which is highly turbulent and swirling with small scale details. Since this technique does not solve the linear system in high‐resolution grids, it can perform fluid simulation more rapidly. We can easily estimate the influence of turbulent and swirling effect to the fluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号