首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
郭金玉  王纲 《信息与控制》2003,32(Z1):716-719
为保证间歇过程安全运行和生产出高质量产品,需要对间歇过程进行监视.本文基于多向主元分析方法(MPCA)和小波变换理论,提出了一种新的监视方法,即多尺度多向主元分析方法(MSMPCA).与MP-CA相比,MSMPCA降低了随机误差对测量数据的影响,提高了过程性能监视和故障诊断的准确性.仿真实例验证了该方法的有效性.  相似文献   

2.
青霉素发酵过程具有非线性极强、动态特性变化快等特点,机理模型难以建立,过程监控和控制很困难.本文针对以上特点,基于多方向主元分析法(MPCA),研究了多阶段MPCA法对青霉素发酵过程的建模及监控.该方法通过多阶段线性结构改进传统MPCA法的单模型线性化结构,以分段线性建模逼近非线性的方式,弥补传统MPCA法的不足,提高监控的准确度和速度.本文详细地讨论了多阶段MPCA建模方法、原理,并通过在青霉素发酵仿真过程的戍用,验证了该方法的监控效果要好于传统MPCA法,可以更及时地检测到过程故障,从而进一步说明该方法比MPCA法的监控性能更可靠.  相似文献   

3.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。  相似文献   

4.
为了提高不等长间歇过程故障诊断的性能, 同时降低算法的复杂度, 提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离, 并将这些统计特征组合成一个等长的特征向量; 然后运用主元分析(PCA)进行过程监视。半导体工业实例的仿真结果表明, 与传统的多向主元分析(MPCA)方法相比, 基于统计特征的不等长间歇过程故障诊断算法的故障诊断率提高15%, 故障检测时间减少了0. 002 s, 因此该算法具有很好的故障诊断性能。  相似文献   

5.
针对间歇过程特点和基于多向主元分析(Multiway Principal Component Analysis,MPCA)的间歇过程监控方法的缺陷,利用核映射在处理非线性过程和Fisher判别分析(Fisher Discriminant Analysis,FDA)在故障诊断能力上的优势,提出了基于递推多模型的核多向Fisher判别式分析(Recursive Multi-model Kernel Multi-way FDA,RMKMFDA)的间歇过程监测与故障诊断方法。该方法采用多模型核多向Fisher判别分析(Multi-model Kernel Multi-way FDA,MKMFDA)非线性结构代替MPCA单模型线性化结构,并提出确定时滞变量的算法;一旦通过MKMFDA监测出某一新批次过程正常,则模型参考数据库就随之更新;在线监控时通过比较核Fisher特征向量之间的欧氏距离来实现,而最优核Fisher判别向量用来鉴别故障类型。该方法在实时监控新的批过程时,只需利用已收集到的数据信息,且在线递推地更新模型参考数据库,提高了间歇过程监控的准确性,克服了MPCA不能处理非线性过程和实时性问题。通过采用RMKMFDA与移动窗多向主元分析(Moving Window MPCA,MWMPCA)方法对青霉素分批补料发酵过程的实时监控,结果表明RMKMFDA比MWMPCA能更及时地监测出过程异常情况,更准确地判断异常发生的原因。  相似文献   

6.
针对间歇过程特点和基于多向主元分析(Multiway Principal Component Analysis,MPCA)的间歇过程监控方法的缺陷,利用核映射在处理非线性过程和Fisher判别分析(Fisher Discriminant Analysis,FDA)在故障诊断能力上的优势,提出了基于递推多模型的核多向Fisher判别式分析(Recursive Multi-model Kernel Multi-way FDA,RMKMFDA)的间歇过程监测与故障诊断方法。该方法采用多模型核多向Fisher判别分析(Multi-model Kernel Multi-way FDA,MKMFDA)非线性结构代替MPCA单模型线性化结构,并提出确定时滞变量的算法;一旦通过MKMFDA监测出某一新批次过程正常,则模型参考数据库就随之更新:在线监控时通过比较核Fisher特征向量之间的欧氏距离来实现,而最优核Fisher判别向量用来鉴别故障类型。该方法在实时监控新的批过程时,只需利用已收集到的数据信息,且在线递推地更新模型参考数据库,提高了间歇过程监控的准确性,克服了MPCA不能处理非线性过程和实时性问题。通过采用RMKMFDA与移动窗多向主元分析(Moving Window MPCA,MWMPCA)方法对青霉素分批补料发酵过程的实时监控,结果表明RMKMFDA比MWMPCA能更及时地监测出过程异常情况,更准确地判断异常发生的原因。  相似文献   

7.
针对间歇过程时段的切换存在过渡区域,同时,间歇过程数据有着强非线性的特点,提出一种基于时段及过渡区域的KICA间歇过程监测方法。该方法基于MPCA及k-means聚类算法对间歇过程进行子时段划分,并基于第一主元贡献率差值识别时段间的过渡区域,在此基础上,对稳定时段建立统一KICA监测模型,而过渡区域针对各时刻滑动窗口进行KICA建模监测。将该方法应用于青霉素发酵过程在线监测,实验结果表明,相比sub..PCA监测方法,本文基于时段及过渡区域的KICA监测方法能更及时、准确的检测到过渡区域的异常。  相似文献   

8.
将多向偏最小二乘(MPLS)方法应用于青霉素间歇生产过程的建模与故障诊断中。从青霉素反应过程的特点来看,数据具有多维性,应用传统的偏最小二乘方法会使过程的统计建模与故障诊断难以实现。MPLS可对间歇过程的多维数据沿变量方向进行分割,使得多批量的数据可以在过程的各操作阶段建立相应的PLS模型,从而完成对该反应过程的实时监视与故障诊断。运用T2统计、Q统计方法,结合贡献图对过程进行了仿真分析,从理论分析和仿真实验结果的一致性,证明了该方法在青霉素生产过程的故障检测与诊断方面是可行的。  相似文献   

9.
多向主元分析(MPCA)是监测间歇生产过程故障的较为有效的方法,但由于其自身的线性化特点,故在复杂的非线性动态系统的监测中便不能及时、准确地发现故障。本文就MPCA法的这一缺点提出新的多段MPCA法,根据过程本身的动态特性,将间歇过程分成多阶段,用多个MPCA模型来描述。此法应用于监测青霉素发酵的过程,比普通MPCA能更及时、准确地检测到故障。  相似文献   

10.
针对间歇过程非线性的特点,将核方法引入到Fisher判别分析(Fisher Discriminant Analysis,FDA)中,提出了基于多模型核多向Fisher判别分析(Multi-model Kernel Multi-way FDA,MKMFDA)的间歇过程非线性监测与故障诊断方法。该方法仅利用已获得的数据测量值对过程进行监控,避免了传统多向主元分析(Multi-way Principal Component Analysis,MPCA)方法对未来测量值的估计;且在线监控时通过比较核Fisher特征向量之间的欧氏距离来实现,而最优核Fisher判别向量用来鉴别故障类型。青霉素发酵过程应用表明,MKMFDA方法比传统的MPCA方法能更及时地监测出过程异常情况,更准确地判断异常发生的原因。  相似文献   

11.
吕宁  颜鲁齐  白光远 《计算机科学》2016,43(Z6):25-27, 33
基于主元分析的故障诊断模型应用在非线性时变过程中具有局限性。基于间歇过程具有周期性这一特点,在非线性空间的数据提取中,将核变换理论引入其中,提出了一种改进的多向核主元分析故障诊断模型,该方法对于过程数据的非线性问题的解决和非线性信息的充分提取表现出很好的性能,使得非线性主元能够在高维特征空间中被快速提取。 对比实验结果表明,该方法对于缓慢时变的间歇过程具有很好的准确性与实时性。  相似文献   

12.
李元  谢植  周东华 《信息与控制》2004,33(2):253-256
根据化工生产过程的间歇反应特点,提出了一种基于一致多方向主元分析(CMPCA)的过程性能监测与故障诊断方法.首先基于动态时间规整DTW(Dynamic Time Warping)技术对批次数据进行同步化,􀁯从而使得用于建模和诊断的数据均具一致性,保证了过程性能监测与故障诊断的.  相似文献   

13.
主元分析(principal component analysis)是一种多元统计技术,在过程监控和故障诊断中具有广泛的应用。针对过程监控中数据量大的特点,提出一种稀疏主元分析(sparse principal component analysis)方法,通过引入lasso约束函数,构建稀疏主元分析的框架,将PCA降维问题转化为回归最优化问题,从而求解得到稀疏化的主元,并提高了主元模型的抗干扰能力。由于稀疏后主元相关的数据量减少,利用数据建立过程监控模型,减少了计算量,并缩短了计算时间,进而提高了监控的实时性。利用田纳西伊斯特曼过程(TE processes)进行实验仿真,并与传统的主元分析方法进行对比研究。结果表明,新提出的稀疏主元分析方法在计算效率和监控实时性上均优于传统的主元分析方法。  相似文献   

14.
近年来,统计过程监测方法在多变量过程监测领域得到广泛应用,但对于存在显著 非线性的过程,这类方法的性能往往不尽人意,而神经网络在处理非线性问题上具有卓越的 优势.本文将多变量投影方法和径向基神经网络良好的逼近能力结合起来,提出了一种基于 嵌入径向基网络的非线性主成分回归算法的过程监测及故障诊断方法.在三水箱实验装置上 进行的实验结果说明该方法确实能够有效地实现过程监测、快速地检测并诊断出故障状态.  相似文献   

15.
针对传统的多向主元分析(Multiway Principal Component Analysis,MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA与动态时间错位(Dynamitc Time Warping,DTW)方法,该方法采用多模型非线性结构代替传统的MPCA单模型线性化结构,并利用对称式DTW算法解决了多元轨迹同步化的问题。将该方法应用到青霉素发酵批过程的在线故障监测中,结果表明它克服了MPCA不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性。  相似文献   

16.
多段主元分析(MPCA)是针对间歇进行故障诊断一种行之有效的方法.在MPCA中主元个数的确定是模型的关键,关系到主元模型的可靠性、准确性、完备性.传统的累积方差贡献率(CPV)方法确定主元个数主观性较大并且没有考虑故障因素.为了提高检测性能,有效的提取主元,文中提出一种信噪比(SNR)与MPCA相结合选取间歇过程主元个数的方法,SNR表明的是故障诊断的灵敏度和主元个数的影响关系,在确保主元信息充分描述数据的基础上,该方法考虑了故障的信息对主元个数的影响来选取主元.将此方法应用于青霉素间歇发酵过程故障诊断中,仿真结果表明T2统计量和SPE统计量的响应曲线对故障更加敏感,有效地提高了故障诊断的准确率.  相似文献   

17.
姚远  佟佳蓉  高军  王姝  宋圣军 《控制与决策》2022,37(5):1402-1408
针对工业过程动态性及非线性强等特点,提出一种基于动态局部保持主成分分析法的过程监测方法.该方法通过构造扩展矩阵来解决动态过程中各采样点间相关性强的问题,并将局部保持投影(LPP)与主成分分析法(PCA)相结合从而实现提取流形结构的最大方差信息.在此基础上,针对复杂工业过程变量复杂多变、呈不同特性的特点,提出基于分层分块DLPPCA-SVM(dynamic locality preserving principal component analysis-support vector machine, DLPPCA-SVM)的过程监测及故障诊断方法,该方法针对不同特性的子块分别采用DLPPCA和PCA进行建模,并利用支持向量机进行故障诊断.将该方法用于田纳西-伊斯曼(TE)化工过程和发电机组的在线监测和故障诊断,仿真结果验证了所提出方法的有效性.  相似文献   

18.
基于KPCA的HVAC系统传感器故障诊断   总被引:1,自引:1,他引:0  
传感器状态的好坏很大程度上影响暖通空调(HVAC)系统的运行,对其展开故障诊断十分必要。核主成分分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变量中的非线性关系,将其用于传感器常见4种故障的诊断,先用Q统计量进行故障监测,再用T2贡献量百分比变化来识别故障。实验结果表明:KPCA方法具有很好的故障监测与诊断能力。  相似文献   

19.
针对间歇过程的高度复杂性、强非线性、强时段性等特点,提出一种基于核熵成分分析(KECA)特征变量降维,利用烟花算法(FWA)优化支持向量机(SVM)参数的间歇过程分时段故障诊断方法。首先,通过多向核主元分析(MKPCA)进行在线故障监测,输出故障数据;其次,利用K-means分类方法将间歇过程划分为若干个子时段,对故障数据进行KECA特征变量处理,按熵值贡献率来确定选取主元的个数,深层提取特征信息;最后,在各子时段内分别构建FWA优化SVM参数故障诊断模型,将降维处理后的故障数据代入各自所属子时段FWA-SVM诊断模型内进行故障诊断。通过对青霉素仿真实验数据进行各种对比实验研究,验证了该方法的可行性与有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号