共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
数据挖掘中常用关联规则挖掘算法 总被引:3,自引:3,他引:3
文中首先介绍了数据挖掘中关联规则的经典算法--Apiori算法.再从宽度、深度、划分、采样、增量式更新等几个角度对关联规则挖掘进行了分类讨论.然后运用文献查询和比较分析的方法对常见的关联规则挖掘算法进行了概述,主要包括FP-growth算法、DHP算法、Partition算法、FUP算法、CD算法等算法.最后对关联规则挖掘的发展远景进行了展望. 相似文献
5.
近些年来,计算机技术迅猛发展带动信息技术的兴起,数据挖掘技术被广泛地应用到各个领域当中。这个新兴的领域为数据挖掘技术提供了最为活跃的算法,即关联规则算法,其能够对于大量的数据和信息进行处理,通过将繁琐的项集从数据库中找出来,经过整理之后,将项集之间的关联关系建立起来,从中挖掘出有价值的数据信息,以在一定程度上满足不同领域的需要。本文针对数据挖掘中关联规则算法进行研究。 相似文献
6.
关联规则挖掘综述 总被引:10,自引:0,他引:10
王小虎 《计算机工程与应用》2003,39(33):190-193
简要论述了关联规则挖掘的研究情况,给出了关联规则的分类方法,分析和评价了关联规则的一些典型算法,指出了关联规则的兴趣度,最后提出了关联规则研究的发展趋势。 相似文献
7.
8.
信息时代的到来,产生了大量的数据。在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将会创造很多潜在的利润。关联规则的挖掘已被广泛应用在实际生活中。但过去的研究往往认为数据库各个项目的重要程度是相同的,而事实上,用户对项目的看重程度是不同的,因此已有算法挖掘出来的并不一定是我们感兴趣的规则。针对这种情况.提出了加权关联规则。 相似文献
9.
10.
在数据挖掘中,关联规则挖掘一直是国内外研究的热点之一,本文在正关联规则的基础上,主要探讨了负关联规则的挖掘算法,提出了对负关联规则的前项和后项所对应正项的支持度研究问题,并对其进行了分析处理。 相似文献
11.
针对Apriori和AprioriTid算法中存在的项集生成瓶颈问题,提出了一种基于事务集压缩、候选项集压缩和支持度布尔矩阵的改进AprioriTid算法。该算法中通过删去不必比较的事务来有效缩减数据集;优化频繁项集的自连接方式来减少生成的候选项集个数;使用支持度布尔矩阵来加快候选项集的验证速度。实验结果表明改进算法确实能有效减少相关计算量,比已有算法执行效率明显提高,同时验证了该算法在旋转机械故障诊断中的有效性。 相似文献
12.
关联规则挖掘中对Apriori算法的一种改进研究 总被引:2,自引:0,他引:2
通过对关联规则挖掘算法的详细分析,提出了一种基于无向项集图的动态频繁项集挖掘算法.当事务数据库和最小支持度发生变化时,该算法只需重新遍历一次无向项集图即可得到新的频繁项集.该算法不仅简单、只需扫描一次数据库,而且还具有搜索速度快、节省内存空间等优点. 相似文献
13.
一种有效的挖掘关联规则更新方法 总被引:1,自引:0,他引:1
在挖掘关联规则过程中,用户往往需要多次调整(增加或减少)最小支持度,才能获得有用的关联规则。给出一个利用已存信息有效产生新候选项目集的PSI算法,结果表明每次扫描数据库时能有效地减少候选项目集的数。 相似文献
14.
文章对网格数据挖掘中的关联规则挖掘问题进行了探讨,给出了两种实现方案,一是采用局部一局部的通信模式,各个站点的通信负载比较均衡;二是采用局部一全局的通信模式,减少了各局部站点的通信负荷,实现了各局部站点的完全异步,但对全局站点的性能要求较高。 相似文献
15.
本文采用一种基于布尔矩阵的频繁集挖掘算法。该算法直接通过支持矩阵行向量的按位与运算来找出频繁集,而不需要Apriori算法的连接和剪枝,通过不断压缩支持矩阵,不仅节约了存储空间,还提高了算法的效率。 相似文献
16.
生成关联规则算法FAS,能够迅速区分某频繁项集的所有关联规则的前件和后件,生成给定频繁项目集的关联规则。基于FAS算法,设计并实现了一个基于最近挖掘结果的数据挖掘系统AR—Miner。该系统主要包括数据预处理、频繁集初始计算、频繁集更新计算、频繁集选择、关联规则生成五部分,不仅实现了关联规则挖掘的可视化和生成结果按“支持度一可信度”形式的可视化,还为基于频繁集的交互式挖掘提供了方便、友好的界面。 相似文献
17.
在数据挖掘领域,关联规则的挖掘和基于粗糙集理论抽取决策规则是两种截然不同的方法,但在统计意义下两种方法产生的规则基本相同。结合关联规则挖掘方法和粗糙集方法的优点,基于Apriori算法提出一种优化算法,获取具有一定支持度和可信度阈值且不产生冗余的决策规则,以提高粗糙集属性值约简算法的性能。 相似文献
18.
现有的传感器网络数据处理系统只能向用户提供简单的查询操作,如何高效地处理传感器网络的海量数据流,从中获取有用的知识成为新的挑战.提出一种基于传感器网络特性的分布式关联规则挖掘算法,采用树型通信结构,各个传感器通过改进的单一数据流频繁项集挖掘算法找出本地的局部频繁项集,并逐层上传、合并,最后由sink节点将所有子节点的局部频繁项集合并成全局的频繁项集,并产生相应的关联规则.实验证明该算法占用较少的计算时间和内存. 相似文献
19.
沈旭昌 《计算机工程与设计》2005,26(3):750-751,767
隐私保护是数据挖掘中很有意义的研究方向。M.Kantarcioglu等提出了针对水平分割数据的保持隐私的关联规则挖掘的算法,探讨了如何在两个垂直分布的私有数据库的联合样本集上施行数据挖掘算法,同时保证不向对方泄露任何与结果无关的数据库数据,针对资料分类算法中应用非常普遍的关联规则挖掘算法,利用安全两方计算协议.给出一个保持隐私的关联规则挖掘协议。 相似文献
20.
在事务数据集中发现项目间的关联规则是数据挖掘的一个经典问题,但传统的关联规则挖掘方法对于大事务数据集而言,执行效率相对较低。已经有研究表明,采样技术能有效地改善挖掘效率。在分析现有采样方法的基础上,提出了一种新的基于采样的高效关联规则挖掘算法ESMA。该算法采用了更加有效的双向采样策略。通过实验分析表明,该算法明显地加快了大事务数据库中采样的速度,从而降低了CPU时间,而且具有很好的可扩展性。 相似文献