首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 88 毫秒
1.
《传感器与微系统》2019,(1):152-154
针对传统聚类算法无法处理大规模数据的特点,结合增量算法和簇特征的思想,在初始聚类阶段,采用基于距离的K-means聚类算法获取相应簇的特征。根据簇特征,并结合K最近邻(KNN)的思想处理增量,提出了基于簇特征的增量聚类算法。提出的方法已经在加州大学尔湾分校(UCI)机器学习库中提供的真实数据集的帮助下得到验证。实验结果表明:提出的增量聚类方法的聚类精度较普通K-means算法和原始增量K-means算法有明显提高。  相似文献   

2.
传统文本聚类方法只适合处理静态样本,且时间复杂度较高。针对该问题,提出一种基于簇相合性的文本增量聚类算法。采用基于词项语义相似度的文本表示模型,利用词项之间的语义信息,通过计算新增文本与已有簇之间的相合性实现对文本的增量聚类。增量处理完部分文本后,对其中错分可能性较大的文本重新指派类别,以进一步提高聚类性能。该算法可在对象数据不断增长或更新的情况下,避免大量重复计算,提高聚类性能。在20 Newsgroups数据集上进行实验,结果表明,与k-means算法和SHC算法相比,该算法可减少聚类时间,提高聚类性能。  相似文献   

3.
《传感器与微系统》2019,(2):136-139
大多数聚类算法都是在静态情况下运行,使其不允许添加任何增量数据。提出了一种基于K近邻(KNN)的增量聚类算法,算法包含两个创新点,利用K近邻的思想和样本紧密度两个条件处理增量数据;根据簇特征的变化分裂或合并簇。实验表明:提出的算法既可以发现新簇,又能有效规避噪声点,且能够处理非球形的数据集。  相似文献   

4.
动态增量聚类的设计与实现   总被引:2,自引:0,他引:2       下载免费PDF全文
传统聚类算法往往只适用于静态数据集的聚类。对于动态数据集,新增数据后,前期的聚类结果不再可靠,运用此类算法则需要重新聚类,这样会造成效率低下和计算资源浪费。在基于密度和自适应密度可达聚类算法的基础上,提出了一种新的增量聚类算法。理论分析和实验结果证明该算法能够有效地处理动态数据集,提高聚类效率和资源的利用率。  相似文献   

5.
针对传统增量聚类方法对混合属性数据聚类时存在不稳定、随机性大和准确性不够高的缺点,提出一种基于聚类融合的混合属性数据增量聚类算法.该算法以传统增量聚类为基础,采用多种聚类算法的结果进行融合来代替原有单一划分,并重新修正了阈值的取值范围.实验表明,所提出的算法利用原有数据的特征,提高了聚类的稳定性和精确性,具有很好的聚类效果.  相似文献   

6.
多数据流的增量聚类实现与应用   总被引:1,自引:1,他引:0       下载免费PDF全文
张锡琴 《计算机工程》2009,35(14):49-51
针对时间序列数据流的增量聚类研究较少的现状,采用多维时态子空间聚类对数据流的增量聚类进行探究。多维时态子空间聚类是指在连续一段时间内,数据流中的值的距离小于2α,它的另一个要求是最后的聚类结果必须包含一定数量的数据流。聚类结果随时间的演变能持续增量地更新,这个更新机制采用滑动窗口的形式,把最早时刻的数据删除后,添加入新到达的数据。采用股票数据对算法进行测试与验证,实验证明,该算法效果较好。  相似文献   

7.
分析了聚类数目的确定对大样本数据聚类效果的影响,对目前聚类质量衡量指标的几个主要流行观点进行了剖析.利用文本相似度的概念对文本语义最佳聚类数问题进行了研究,提出了一种基于聚类过程的丈本最佳聚类数算法CTBP,其主要思想是在文本向量集的每个文本向量中抽取出一个词汇,按相似度有序排列,用增量逐层划分以得到最优划分所对应的簇类数.这样通过扫描一遍数据就可以获得多个统计信息,最后求出最优解.实验结果表明了该算法的高质量和高效率.  相似文献   

8.
为了有效聚类动态数据,妥善处理已存在的类簇与新增数据的关系,高效利用计算资源,提高聚类的效率,扩散涌现的增量聚类算法被提出.该算法在扩散涌现聚类算法的基础上,利用近邻传播算法完善了算法的分裂机制,实现了新旧数据的有效聚合.实验结果表明,该算法有效实现了动态数据的聚类,提高了聚合动态数据的效率和资源的利用率.  相似文献   

9.
基于密度复杂簇聚类算法研究与实现   总被引:1,自引:2,他引:1       下载免费PDF全文
聚类算法在模式识别、数据分析、图像处理、以及市场研究的应用中,需要解决的关键技术是如何有效地聚类各种复杂的数据对象簇。在分析与研究现有聚类算法的基础上,提出了一种基于密度和自适应密度可达的改进算法。实验证明,该算法能够有效聚类任意分布形状、不同密度、不同尺度的簇;同时,算法的计算复杂度与传统基于密度的聚类算法相比有明显的降低。  相似文献   

10.
提出一种基于网格的多密度增量聚类算法MICG,定义含网格单元间的相对密度和重心距离的判别函数。当数据集的部分数据发生变动后,不需要对全部数据重新聚类,只需分析有数据变更的单元与邻居单元的关系,结合原有的聚类结果形成新的聚类,有效地提高了聚类分析的效率。时间复杂度与空间复杂度同数据集大小、属性个数成线性关系。实验结果表明,MICG算法能够处理任意形状和不同密度的类,有效地解决数据更新时的增量聚类问题。  相似文献   

11.
针对FCM算法的缺点,提出了一种基于改进的FCM的增量式聚类方法。该算法首先对模糊C均值算法进行加权,并将权系数归一化,然后将改进的算法与增量式聚类算法结合。改进的方法既提高了FCM算法的性能,避免了FCM算法的缺陷,并能够实现增量式聚类,避免了大量的重复计算,并且不受孤立点的影响。实验表明该算法的有效性。  相似文献   

12.
基于特征向量的分布式聚类算法   总被引:7,自引:0,他引:7  
提出了一种新的表达数据集的方法——特征向量,它通过坐标和密度描述了某一密集空间,以较少的数据量反映站点数据的分布特性。在此基础上提出了一种基于特征向量的分布式聚类算法——DCBFV(Distributed Clustering Based on Feature Vector),该算法可有效降低网络通信量,能够对任意形状分布的数据进行聚类,提高了分布式聚类的时空效率和性能。理论分析和实验结果表明DCBFV是高效可行的。  相似文献   

13.
数据挖掘领域中已提出了很多聚类算法及其改进形式,但对增量式聚类方法的研究较少。当数据集因为更新而发生了变化,那么数据挖掘结果也要进行必要的更新。由于数据量大,如果在新增数据后再对所有数据运用聚类算法进行聚类,效率显然不高,因此进一步研究增量式聚类算法是很有必要的。在一种改进的基于遗传算法的粗糙聚类方法(IRCBGA)的基础上,提出了一种增量式粗糙聚类方法。数值仿真表明该算法能很好地解决传统聚类算法的数据更新的聚类问题。  相似文献   

14.
介绍Web文档聚类的应用,针对现有文档聚类算法缺乏动态更新能力、经验参数过多以及缺乏对新词的把握等不足,提出动态调整的Web文档增量聚类(Dynamically Adjusted Incremental Web Document Clustering,DAIWDC)算法,并使用同义词词林优化结果.该算法在实验中达到了88%的正确率和75%的全面率,表明其具有较高的实用价值.  相似文献   

15.
针对K-means、FMC聚类算法容易陷入局部最优且对初始解很敏感的问题,提出了一种新的基于划分和连接度的聚类优化算法,并给出了具体算法实现,明显地避免了对初始化选值敏感性的问题。给出了在KDDCUP99数据集上的检测结果,实验表明该算法具有较高的检测率及较低的误检率。  相似文献   

16.
Unsupervised feature selection is an important problem, especially for high‐dimensional data. However, until now, it has been scarcely studied and the existing algorithms cannot provide satisfying performance. Thus, in this paper, we propose a new unsupervised feature selection algorithm using similarity‐based feature clustering, Feature Selection‐based Feature Clustering (FSFC). FSFC removes redundant features according to the results of feature clustering based on feature similarity. First, it clusters the features according to their similarity. A new feature clustering algorithm is proposed, which overcomes the shortcomings of K‐means. Second, it selects a representative feature from each cluster, which contains most interesting information of features in the cluster. The efficiency and effectiveness of FSFC are tested upon real‐world data sets and compared with two representative unsupervised feature selection algorithms, Feature Selection Using Similarity (FSUS) and Multi‐Cluster‐based Feature Selection (MCFS) in terms of runtime, feature compression ratio, and the clustering results of K‐means. The results show that FSFC can not only reduce the feature space in less time, but also significantly improve the clustering performance of K‐means.  相似文献   

17.
特征选择是数据挖掘和机器学习领域中一种常用的数据预处理技术。在无监督学习环境下,定义了一种特征平均相关度的度量方法,并在此基础上提出了一种基于特征聚类的特征选择方法 FSFC。该方法利用聚类算法在不同子空间中搜索簇群,使具有较强依赖关系(存在冗余性)的特征被划分到同一个簇群中,然后从每一个簇群中挑选具有代表性的子集共同构成特征子集,最终达到去除不相关特征和冗余特征的目的。在 UCI 数据集上的实验结果表明,FSFC 方法与几种经典的有监督特征选择方法具有相当的特征约减效果和分类性能。  相似文献   

18.
针对传统K-均值算法对初始聚类中心选择较为敏感的问题,提出了一种基于融合集群度与距离均衡优化选择的K-均值聚类(K-MCD)算法。首先,基于"集群度"思想选取初始簇中心;然后,遵循所有聚类中心距离总和均衡优化的选择策略,获得最终初始簇中心;最后,对文本集进行向量化处理,并根据优化算法重新选取文本簇中心及聚类效果评价标准进行文本聚类分析。对文本数据集从准确性与稳定性两方面进行仿真实验分析,与K-均值算法相比,K-MCD算法在4个文本集上的聚类精确度分别提高了18.6、17.5、24.3与24.6个百分点;在平均进化代数方差方面,K-MCD算法比K-均值算法降低了36.99个百分点。仿真结果表明K-MCD算法能有效提高文本聚类精确度,并具有较好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号