首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
张鹏  齐文娟  邓自立 《自动化学报》2014,40(11):2585-2594
研究了分簇传感网络分布式融合Kalman滤波器.根据最邻近原则将传感网络分成簇,每簇由传感节点和簇首组成.应用极大极小鲁棒估计原理,基于带噪声方差最大保守上界的最坏保守系统,对带不确定性噪声方差的分簇传感网络系统提出了两级鲁棒观测融合Kalman滤波器.当传感器数量非常多的时候它可以明显减小通信负担.在鲁棒性分析中利用Lyapunov方程方法证明了局部和融合Kalman滤波器的鲁棒性.提出了鲁棒精度的概念,并证明了局部和融合鲁棒Kalman滤波器之间的鲁棒精度关系.证明了两级加权观测融合器的鲁棒精度等价于相应的全局集中式鲁棒融合器的鲁棒精度,并且高于每个局部观测融合器的鲁棒精度.一个仿真例子说明上述结果的准确性.  相似文献   

2.
对带丢失观测和不确定噪声方差的线性定常多传感器系统,引入虚拟噪声将原系统转化为仅带不确定噪声方差的系统.根据极大极小鲁棒估值原理,用Lyapunov方程方法提出局部鲁棒稳态Kalman滤波器及其实际方差最小上界,并利用保守的局部滤波误差互协方差,提出一种改进的鲁棒协方差交叉(covariance intersection,CI)融合稳态Kalman滤波器及其实际方差最小上界.证明了所提出的鲁棒局部和融合滤波器的鲁棒性,并证明了改进的CI融合器鲁棒精度高于原始CI融合鲁棒精度,且高于每个局部滤波器的鲁棒精度.一个仿真例子验证所提出结果的正确性和有效性.  相似文献   

3.
针对带随机参数和噪声方差两者不确定性的线性离散多传感器系统,利用虚拟噪声补偿随机参数不确定性,原系统可转化为仅带不确定噪声方差的系统.根据极大极小鲁棒估值原理,用Lyapunov方程方法提出局部鲁棒稳态Kalman预报器及其误差方差最小上界,并利用保守的局部预报误差互协方差,提出改进的鲁棒协方差交叉(Covariance intersection,CI)融合稳态Kalman预报器及其误差方差最小上界.克服了原始CI融合方法要求假设已知局部估值及它们的保守误差方差的缺点和融合误差方差上界具有较大保守性的缺点.证明了鲁棒局部和融合预报器的鲁棒性,并证明了改进的CI融合器鲁棒精度高于原始CI融合器鲁棒精度,且高于每个局部预报器的鲁棒精度.一个仿真例子验证了所提出结果的正确性和有效性.  相似文献   

4.
对带不确定参数和噪声方差的多传感器定常系统,引入虚拟白噪声补偿不确定参数,可将其转化为带已知参数和不确定噪声方差系统.应用极大极小鲁棒估值原理和加权最小二乘法,基于带噪声方差保守上界的最坏情形保守系统,提出了鲁棒加权观测融合Kalman滤波器,并证明了它与集中式融合鲁棒Kalman滤波器是等价的,且融合器的鲁棒精度高于每个局部滤波器鲁棒精度.一个Monte-Carlo仿真例子说明了如何寻求不确定参数的鲁棒域和如何搜索保守性较小的虚拟噪声方差上界.  相似文献   

5.

对于带有不确定协方差线性相关白噪声的多传感器系统, 利用Lyapunov 方程提出设计协方差交叉(CI) 融合极大极小鲁棒Kalman 估值器(预报器、滤波器、平滑器) 的一种统一方法. 利用保守的局部估值误差互协方差, 提出改进的CI 融合鲁棒稳态Kalman 估值器及其实际估值误差方差最小上界, 克服了用原始CI 融合方法给出的上界具有较大保守性的缺点, 改善了原始CI 融合器鲁棒精度. 跟踪系统的仿真例子验证了所提出方法的正确性和有效性.

  相似文献   

6.
协方差交叉融合鲁棒Kalman滤波器   总被引:1,自引:0,他引:1  
对于带未知互协方差的两传感器系统,提出一种协方差交叉(CI)融合鲁棒稳态Kalman滤波器,它关于未知互协方差具有鲁棒性.严格证明了该滤波器的实际精度高于每个局部滤波器的精度,但低于带已知互协方差的最优融合Kalman滤波器的精度.基于协方差椭圆给出了精度关系的几何解释.进一步将上述结果推广到一般多传感器情形.一个跟踪系统的Monte-Carlo仿真例子表明,其实际精度接近于带已知互协方差的最优融合器的精度.  相似文献   

7.
本文研究带不确定方差乘性和加性噪声和带状态相依及噪声相依乘性噪声的多传感器系统鲁棒加权融合估计问题.通过引入虚拟噪声补偿乘性噪声的不确定性,将原系统化为带确定参数和不确定加性噪声方差的系统,进而利用Lyapunov方程方法提出在统一框架下的按对角阵加权融合极大极小鲁棒稳态Kalman估值器(预报器、滤波器和平滑器),其中基于预报器设计滤波器和平滑器,并给出每个融合器的实际估值误差方差的最小上界.证明了融合器的鲁棒精度高于每个局部估值器的鲁棒精度.应用于不间断电源(uninterruptible power system,UPS)系统鲁棒融合滤波的仿真例子说明了所提结果的正确性和有效性.  相似文献   

8.

对于带不确定模型参数和噪声方差的线性离散时不变多传感器系统, 用虚拟噪声补偿不确定参数, 系统转化为仅带噪声方差不确定性的多传感器系统. 用加权最小二乘法和极大极小鲁棒估计准则, 基于带噪声方差保守上界的最坏情形保守系统, 提出一种鲁棒加权观测融合稳态Kalman 预报器, 并应用Lyapunov 方程方法证明了它的鲁棒性, 同时给出了与鲁棒局部和集中式融合Kalman 预报器的精度比较. 最后通过一个仿真例子说明了如何搜索参数扰动的鲁棒域, 并验证了所提出的理论结果的正确性和有效性.

  相似文献   

9.
对不确定噪声方差乘性噪声,同时带观测缺失、丢包和一步随机观测滞后三种网络诱导特征的混合不确定网络化系统,应用带虚拟噪声的扩维方法和去随机参数方法,将其转化为带不确定虚拟噪声方差的时变系统.基于极大极小鲁棒估计原理,对带虚拟噪声方差保守上界的最坏情形系统,设计了鲁棒时变和稳态Kalman估值器.对所有容许的不确定性,保证实际Kalman估计误差方差有最小上界.应用扩展的Lyapunov方程方法和矩阵分解方法证明了所设计估值器的鲁棒性.证明了实际和保守估值器的精度关系,以及时变和稳态估值器间的按实现收敛性.应用于F-404航空发动机系统的仿真验证了所提出结果的正确性和有效性.  相似文献   

10.
针对分布式传感网络系统中存在互协方差未知的情形, 融合系数的科学设计对于融合性能至关重要. 本文以各节点估计方差矩阵逆的迹的倒数作为计算融合系数的中间变量, 设计了一种序贯快速协方差交叉融合算法, 可以显著减少各个融合节点的计算量, 能够保证各融合节点融合结果相同. 在给定系统的误差方差上界约束与优化指标前提下, 该融合算法结合粒子群优化算法, 能够给出对分布式系统中各个节点的传感器精度要求. 工程实践中, 可为传感器的选型提供理论依据. 最后, 给出了一个分布式网络传感器精度选型的算例及快速协方差交叉融合算法在雷达网中的应用实例.  相似文献   

11.
This paper deals with the problem of designing robust sequential covariance intersection(SCI) fusion Kalman filter for the clustering multi-agent sensor network system with measurement delays and uncertain noise variances. The sensor network is partitioned into clusters by the nearest neighbor rule. Using the minimax robust estimation principle, based on the worst-case conservative sensor network system with conservative upper bounds of noise variances, and applying the unbiased linear minimum variance(ULMV) optimal estimation rule, we present the two-layer SCI fusion robust steady-state Kalman filter which can reduce communication and computation burdens and save energy sources, and guarantee that the actual filtering error variances have a less-conservative upper-bound. A Lyapunov equation method for robustness analysis is proposed, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented and the robust accuracy relations of the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the global SCI fuser is higher than those of the local SCI fusers and the robust accuracies of all SCI fusers are higher than that of each local robust Kalman filter. A simulation example for a tracking system verifies the robustness and robust accuracy relations.  相似文献   

12.
This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, twolevel robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances.It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.  相似文献   

13.
For networked sensor systems (NSSs) with hard and soft sensors including five uncertainties, two universal approaches of solving the robust fusion estimation problems are presented. It includes an integrated sequential covariance intersection (SCI) fusion minimax robust Kalman filtering approach with cross-covariance information and a generalized Lyapunov equation approach with four pairs of Lyapunov equations. Applying them, the robust local and SCI fused time-varying and steady-state Kalman filters are presented in the sense that their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds. The equivalent batch SCI fusers are also presented. Their robustness and accuracy relations are proved, and the sensitivity of the SCI fuser with respect to the fused orders of sensors is analyzed. Applying the dynamic error system analysis method and the dynamic variance error system analysis method, a new convergence and absolute asymptotic stability theory of robust fusion Kalman filtering is presented. The classical Kalman filtering convergence and stability theory is developed. Compared with the original covariance intersection fuser, they significantly reduced the computational complexity and burden. Compared with the optimal and conservative SCI fusers, they significantly improved the robust accuracies. They are suitable to deal with asynchronous or random delayed data and are suitable for real-time applications. A simulation applied to the two-mass spring damper mechanical system shows their effectiveness.  相似文献   

14.
In this paper, the problem of designing weighted fusion robust time-varying Kalman predictors is considered for multisensor time-varying systems with uncertainties of noise variances. Using the minimax robust estimation principle and the unbiased linear minimum variance (ULMV) rule, based on the worst-case conservative system with the conservative upper bounds of noise variances, the local and five weighted fused robust time-varying Kalman predictors are designed, which include a robust weighted measurement fuser, three robust weighted state fusers, and a robust covariance intersection (CI) fuser. Their actual prediction error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties of noise variances. Their robustness is proved based on the proposed Lyapunov equation approach. The concept of the robust accuracy is presented, and the robust accuracy relations are proved. The corresponding steady-state robust local and fused Kalman predictors are also presented, and the convergence in a realization between the time-varying and steady-state robust Kalman predictors is proved by the dynamic error system analysis (DESA) method and the dynamic variance error system analysis (DVESA) method. Simulation results show the effectiveness and correctness of the proposed results.  相似文献   

15.
For networked mixed uncertain time‐varying systems with uncertain noise variances, random one‐step measurement delay, state‐dependent and noise‐dependent multiplicative noises, and linearly dependent additive white noises, the robust local, centralized, and distributed fusion estimation problems are addressed. Three new approaches are presented, which include a new augmented state approach with fictitious white noises, an extended Lyapunov equation approach with two Lyapunov equations, and a universal integrated covariance intersection (ICI) fusion approach of integrating the minimax robust local Kalman estimators and their conservative cross‐covariances. They constitute a new important methodology of solving robust fusion estimation problems. Applying them, the local, centralized, and distributed ICI fusion time‐varying and steady‐state robust Kalman estimators (predictor, filter, and smoother) are presented in the sense that for all admissible uncertainties, their actual estimation error variances are guaranteed to have the corresponding minimal upper bounds. Their robustness, convergence, and accuracy relations are proved. Specially, the proposed ICI fusers improve the robust accuracies of the original covariance intersection fusers, and overcome their drawbacks, such that the local estimators and their conservative variances are assumed to be known, and the conservative cross‐variances are ignored. A simulation example with application to a vehicle suspension system shows the effectiveness of the proposed approaches and results.  相似文献   

16.
The robust fusion steady‐state filtering problem is investigated for a class of multisensor networked systems with mixed uncertainties including multiplicative noises, one‐step random delay, missing measurements, and uncertain noise variances, the phenomena of one‐step random delay and missing measurements occur in a random way, and are described by two Bernoulli distributed random variables with known conditional probabilities. Using a model transformation approach, which consists of augmented approach, derandomization approach, and fictitious noise approach, the original multisensor system under study is converted into a multimodel multisensor system with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case subsystems with conservative upper bounds of uncertain noise variances, the robust local steady‐state Kalman estimators (predictor, filter, and smoother) are presented in a unified framework. Applying the optimal fusion algorithm weighted by matrices, the robust distributed weighted state fusion steady‐state Kalman estimators are derived for the considered system. In addition, by using the proposed model transformation approach, the centralized fusion system is obtained, furthermore the robust centralized fusion steady‐state Kalman estimators are proposed. The robustness of the proposed estimators is proved by using a combination method consisting of augmented noise approach, decomposition approach of nonnegative definite matrix, matrix representation approach of quadratic form, and Lyapunov equation approach, such that for all admissible uncertainties, the actual steady‐state estimation error variances of the estimators are guaranteed to have the corresponding minimal upper bounds. The accuracy relations among the robust local and fused steady‐state Kalman estimators are proved. An example with application to autoregressive signal processing is proposed, which shows that the robust local and fusion signal estimation problems can be solved by the state estimation problems. Simulation example verifies the effectiveness and correctness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号