共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
粒子群优化算法在关联规则挖掘中的研究综述 总被引:1,自引:0,他引:1
关联规则挖掘是数据挖掘中的重要领域,考虑到当前数据的大规模、高维度、模态多样及类型复杂等特性,传统关联规则挖掘算法已无法适应大数据的需求,粒子群优化算法作为一种高效的智能优化算法,为其提供了一种全新的解决方案,近年来被广泛应用于该领域.首先对粒子群优化算法的基本原理及关联规则的基本概念进行了详细介绍,回顾了粒子群优化算... 相似文献
3.
融合可行基规则的粒子群优化算法及其应用 总被引:1,自引:1,他引:0
基本粒子群优化算法对于离散的优化问题处理不佳,容易陷入局部最优。针对基本粒子群优化算法处理离散型优化问题时的缺陷,提出了一种融合可行基规则的改进型粒子群优化算法,并用该算法求解车辆路径问题。实验结果表明,该算法的优化性能和求解精度均优于其他文献算法,在求解车辆路径问题中具有较高的应用价值。 相似文献
4.
基于改进PSO的规则提取方法 总被引:1,自引:0,他引:1
为解决飞行动作识别规则的自动提取问题,提出一种基于改进粒子群优化算法的飞行动作规则提取方法。在对关键飞行参数特征量进行符号化的基础上,利用基于改进的动态惯性权重策略的离散二进制粒子群算法对符号化的各飞行参数特征量进行组合寻优,以找到能够完全表达飞行动作的识别规则。仿真实验表明,应用该方法得到的飞行动作识别规则简洁、有效,在实践中有良好的应用前景。 相似文献
5.
6.
介绍粒子群算法和具有量子行为的粒子群优化算法QPSO(Quantum-behaved Particle Swarm Optimization).针对QPSO在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了基于QPSO算法的多方法协作优化算法,将QPSO算法与进化规划EP(Evolutionary Programming)算法协作.实验结果表明,改进算法在收敛性和取得最优值方面优于PSO算法和QPSO算法. 相似文献
7.
8.
9.
机制设计是在代理自私行为的基础上寻找博弈规则,获得满意结果的理论和方法。传统的机制设计是手工完成的,Conitzer和Sandholm提出了自动机制设计的方法,把机制设计作为优化问题,并且用线性规划来解决。在本文中,我们提出了使用粒子群优化算法来实现自动机制设计,并对离婚案问题获得了较好的结果。 相似文献
10.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
11.
针对基本粒子群优化算法对高维函数优化时搜索精度不高的缺陷,提出了一种动态粒子群优化算法。该算法采用了通过调节阈值对粒子运动轨迹进行动态改变的策略,使得粒子对周围环境的适应能力不受进化代数的影响,从而保证了算法在迭代后期仍具有较强的搜索能力。实验结果表明,与文献算法相比,该算法在处理高维函数优化时具有更强的寻优能力和更高的搜索精度。 相似文献
12.
本文提出了一种改进粒子群优化算法。在进化中增加了个体间的协作机制,这种改进后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。最后将该方法用于PERT网络工期一费用模型求解,数字仿真表明了算法的有效性。 相似文献
13.
复形法粒子群优化算法研究 总被引:1,自引:1,他引:0
针对基本粒子群优化算法对复杂函数优化时难以获得最优解的缺陷,提出了一种复形粒子群优化算法。该算法采用复形法来提高粒子的局部搜索能力,从而保证了算法能够跳出局部最优,获得全局最优解。实验结果表明,与文献算法相比,该算法在基准函数优化时具有更强的寻优能力和更高的搜索精度。 相似文献
14.
15.
16.
针对粒子群算法和混合蛙跳算法在复杂函数寻优上易于陷入局部最优值的缺点,提出一种新的粒子群与混合蛙跳融合算法.算法采用多种群粒子群方法,每次进化后,将各子群中的最优粒子组成新的群体,采用混合蛙跳模式进化,以提高种群的多样性.粒子群各子群的进化模式中,除考虑本子群最好的粒子外,还考虑整合群体最好的粒子.相对于其它一些改进的粒子群或混合蛙跳算法,融合算法概念简单,易于实现,具有良好的全局搜索能力和较快的收敛速度.基准测试函数的仿真结果表明,本文算法优于目前一些常见的改进粒子群算法. 相似文献