首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feedback control problem for microelectromechanical (MEM) relays is complicated by a quadratic nonlinearity in the dynamic model. We show that this nonlinearity imposes constraints on the reference trajectories that can be tracked and on the global convergence rate of the tracking error. Using a dynamic model that is applicable to both electrostatic and electromagnetic MEM relays, we introduce a new class of nonlinear tracking controls. In particular, we use Lyapunov theory to construct a state feedback that yields uniform global asymptotic stability and arbitrarily fast local exponential convergence of the tracking error. We then show how our control can be redesigned with partial‐state feedback under the assumption that only the movable electrode position and the electrical state (i.e. charge or flux) are fed back. Finally, we utilize input‐to‐state stability theory to quantify the robustness of our state feedback controller to parametric uncertainties. Our simulation results illustrate the good stability and tracking performance of the proposed control. They also illustrate how to craft a reference trajectory that satisfies the aforementioned constraints while being compatible with a typical relay operation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the stability of a variable‐speed wind turbine operating under low to medium wind speed. The turbine is controlled to capture as much wind energy as possible. We concentrate on the mechanical level of the turbine system, more precisely on the drive‐train with the standard quadratic generator torque controller. We consider both the one‐mass and the two‐mass models for the drive‐train, with the inputs being the deviation of the active torque from an arbitrary positive nominal value and the tracking error of the generator torque. We show that the turbine system is input‐to‐state stable for the one‐mass model and integral input‐to‐state stable for the two‐mass model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we propose a simple, continuous, and distributed controller for the second‐order multiagent system to achieve leader‐following trajectory tracking, by exploiting the control input information of neighbors (CIIN) and using proportional‐derivative (PD) control in terms of local neighborhood synchronization error. A constant time delay is introduced in the CIIN as a design parameter to avoid the algebraic loop issue arising from the control input coupling. We develop an easily testable condition on the PD gains to ensure that the resulting neutral‐type error system is input‐to‐state stable for an arbitrary bounded delay, and prove that when the leader's acceleration is a Lipschitz continuous function with respect to time, the ultimate bound of tracking errors is strictly increasing with respect to the introduced time delay. Moreover, we analyze the robustness of the controller with respect to model uncertainties and show its potential advantages over two existing controllers in balancing the steady‐state tracking precision, the communication cost, and the continuity of controller signal. Finally, extensive simulations are conducted to show the effect of the delay on system stability, to verify the condition on PD gains, to confirm the robustness of the controller, and to demonstrate the detailed advantages.  相似文献   

4.
In this paper, a solution to the approximate tracking problem of sampled‐data systems with uncertain, time‐varying sampling intervals and delays is presented. Such time‐varying sampling intervals and delays can typically occur in the field of networked control systems. The uncertain, time‐varying sampling and network delays cause inexact feedforward, which induces a perturbation on the tracking error dynamics, for which a model is presented in this paper. Sufficient conditions for the input‐to‐state stability (ISS) of the tracking error dynamics with respect to this perturbation are given. Hereto, two analysis approaches are developed: a discrete‐time approach and an approach in terms of delay impulsive differential equations. These ISS results provide bounds on the steady‐state tracking error as a function of the plant properties, the control design and the network properties. Moreover, it is shown that feedforward preview can significantly improve the tracking performance and an online extremum seeking (nonlinear programming) algorithm is proposed to online estimate the optimal preview time. The results are illustrated on a mechanical motion control example showing the effectiveness of the proposed strategy and providing insight into the differences and commonalities between the two analysis approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a design problem of low dimensional disturbance observer‐based control (DOBC) is considered for a class of nonlinear parabolic partial differential equation (PDE) systems with the spatio‐temporal disturbance modeled by an infinite dimensional exosystem of parabolic PDE. Motivated by the fact that the dominant structure of the parabolic PDE is usually characterized by a finite number of degrees of freedom, the modal decomposition method is initially applied to both the PDE system and the PDE exosystem to derive a low dimensional slow system and a low dimensional slow exosystem, which accurately capture the dominant dynamics of the PDE system and the PDE exosystem, respectively. Then, the definition of input‐to‐state stability for the PDE system with the spatio‐temporal disturbance is given to formulate the design objective. Subsequently, based on the derived slow system and slow exosystem, a low dimensional disturbance observer (DO) is constructed to estimate the state of the slow exosystem, and then a low dimensional DOBC is given to compensate the effect of the slow exosystem in order to reject approximately the spatio‐temporal disturbance. Then, a design method of low dimensional DOBC is developed in terms of linear matrix inequality to guarantee that not only the closed‐loop slow system is exponentially stable in the presence of the slow exosystem but also the closed‐loop PDE system is input‐to‐state stable in the presence of the spatio‐temporal disturbance. Finally, simulation results on the control of temperature profile for catalytic rod demonstrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper aims to investigate the input‐to‐state exponents (IS‐e) and the related input‐to‐state stability (ISS) for delayed discrete‐time systems (DDSs). By using the method of variation of parameters and introducing notions of uniform and weak uniform M‐matrix, the estimates for 3 kinds of IS‐e are derived for time‐varying DDSs. The exponential ISS conditions with parts suitable for infinite delays are thus established, by which the difference from the time‐invariant case is shown. The exponential stability of a time‐varying DDS with zero external input cannot guarantee its ISS. Moreover, based on the IS‐e estimates for DDSs, the exponential ISS under events criteria for DDSs with impulsive effects are obtained. The results are then applied in 1 example to test synchronization in the sense of ISS for a delayed discrete‐time network, where the impulsive control is designed to stabilize such an asynchronous network to the synchronization.  相似文献   

7.
In this paper, input/output‐to‐state stability (IOSS) and integral IOSS (iIOSS) are investigated for nonlinear impulsive systems with delay. Based on a new impulsive inequality, we propose some sufficient criteria for IOSS and iIOSS of impulsive delay systems. It is shown that the obtained results for IOSS and iIOSS are regardless of the length of the impulsive interval and the size of time delay if the impulsive gain satisfies a given condition. In addition, based on the average impulsive interval method, some more useful sufficient conditions are derived for IOSS and iIOSS of impulsive delay systems with persistent large‐scale destabilizing impulses. Furthermore, a relationship is established among the average impulsive interval, impulses, time delay, and the decay of the system without impulses such that the impulsive delay system is input/output‐to‐state stable and integral input/output‐to‐state stable, respectively. Two examples are given to show the validity of the obtained results.  相似文献   

8.
In this work, we present a novel adaptive fault tolerant control (FTC) scheme for a class of control input and system state constrained multi‐input multi‐output (MIMO) nonlinear systems with both multiplicative and additive actuator faults. The input constraints can be asymmetric, and the state constraints can be time‐varying. A novel tan‐type time‐varying Barrier Lyapunov Function (BLF) is proposed to deal with the state constraints, and an auxiliary system is designed to analyze the effect of the input constraints. We show that under the proposed adaptive FTC scheme, exponential convergence of the output tracking error into a small neighbourhood of zero is guaranteed, while the constraints on the system state will not be violated during operation. Estimation errors for actuator faults are bounded in the closed loop. An illustrative example on a two degree‐of‐freedom robotic manipulator is presented to demonstrate the effectiveness of the proposed FTC scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a new robustness notion that is applicable for certifying systems' safety with respect to external disturbance signals. The proposed input‐to‐state safety notion allows us to certify systems' safety in the presence of the disturbances, which is analogous to the notion of input‐to‐state stability for analyzing systems' stability.  相似文献   

10.
In this paper, the tracking control problem is considered for a class of uncertain nonlinear systems with infinite discontinuous points in the external disturbance. The extended state observer–based 2‐degree‐of‐freedom control is used with one degree to estimate and cancel the “total disturbance” and the other to force the closed‐loop system to have desired characteristics. The tracking error between the state vector and its ideal trajectory in the entire transient process is adequately discussed to illuminate the performance of resulting control systems. The quantitative analysis shows that the tracking error can be small enough by tuning the bandwidth of the extended state observer. Moreover, the necessary and sufficient condition for the tracking error and the estimation error of the “total disturbance” to converge to zero is presented. The simulation results of a motion test demonstrate that the desired performance of the control system can be achieved despite discontinuous disturbance and nonlinear uncertainties.  相似文献   

11.
This paper investigates the input‐to‐state stability (ISS) issue for discrete‐time dynamical networks (DDNs) with time delays. Firstly, a general comparison principle for solutions of DDNs is proposed. Then, based on this general comparison principle, three kinds of ISS‐type comparison principles for DDNs are established, including the comparison principle for input‐to‐state ‐stability, ISS, and exponential ISS. The ISS‐type comparison principles are then used to investigate stability properties related to ISS for three kinds (linear, affine, and nonlinear) of DDNs. It shows that the ISS property of a DDN can be derived by comparing it with a linear or lower‐dimension DDN with known ISS property. By using methods such as variation of parameters, uniform M‐matrix, and the ISS‐type comparison principle, conditions of global exponential ISS for time‐varying linear DDNs with time delays are derived. Moreover, the obtained ISS results for DDNs are extended to the hybrid DDNs with time delays. As one application, the synchronization within an error bound in the sense of ISS is achieved for DDNs with coupling time delays and external disturbances. Finally, two examples are given to illustrate the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper explores regulation theory for the design of robust precision attitude tracking of an uncertain rigid spacecraft with external disturbances. Focusing on the attitude system in terms of unit quaternions with an unknown inertia matrix and unmodeled input disturbances, we first introduce specific nonlinear logic such that the resultant error‐quaternion system has an input‐to‐state stability property. Then, we establish an attitude deviation system with an output feedback normal form that has a strict vector relative degree of unity. This enables us to achieve robust output regulation based on an internal model. In particular, we can construct a high‐gain stabilizer for the relevant augmented system. As a major consequence, our study achieves not only precision attitude tracking with exponential convergence but also the input‐to‐state stability disturbance attenuation for the closed‐loop system. Finally, we show extensive simulation and experimental results to illustrate the approach.  相似文献   

13.
In this paper, two suboptimal event‐triggered control techniques are proposed for both the regulation and the tracking problems in a broad class of nonlinear networked control systems. The proposed techniques are based on the state‐dependent Riccati equation (SDRE) methodology. In the case of the regulation problem, the asymptotic stability of the origin of the closed‐loop system under the proposed event‐triggered control law is investigated. In addition, for the tracking problem, it is proved that the tracking error between the system output and its desired trajectory converges asymptotically to zero under some mild conditions. It is shown that the proposed methods can considerably reduce the information exchange between the controller and the actuator. Due to the implementation procedures of the proposed techniques, no Zeno behavior is occurred. Three numerical simulations are provided to demonstrate the design procedure and the flexibility of the proposed event‐triggered control techniques.  相似文献   

14.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

15.
The global output feedback regulation problem is studied for a class of cascade nonlinear systems. The considered system represents more general classes of nonlinear uncertain systems, including the integral input‐to‐state stable (iISS) unmodeled dynamics, the unknown control direction, the parameter uncertainty, and the external disturbance additively in the input channel. Technically, we explore the changing supply rate technique for the iISS system to deal the iISS unmodeled dynamics and apply the Nussbaum‐type gain into the control design to overcome the unknown control direction. Additionally, a dynamic extended state observer in the form of a time‐varying Kalman observer is novelly constructed to overcome the unmeasured state components in the nonlinear uncertainties. It is shown that the global regulation problem is well addressed by the proposed method, and its efficacy is demonstrated by a fan speed control system.  相似文献   

16.
This paper investigates the problem of state‐feedback control for a class of stochastic high‐order nonlinear systems with stochastic inverse dynamics. Under the assumption that the inverse dynamics of the subsystem are stochastic input‐to‐state stable (SISS), by extending through adding a power integrator technique, choosing an appropriate Lyapunov function and using the idea of changing supply function, a smooth state‐feedback controller is explicitly constructed to render the system globally asymptotically stable in probability and the states can be regulated to the origin. A simulation example is provided to show the effectiveness of the proposed scheme. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

17.
针对电子节气门系统的状态变量不完全可测量, 设计了一个基于观测器的输出反馈电子节气门控制系统. 该系统由一个估计不可测量状态的降阶观测器和一个非线性状态反馈控制器组成. 同时在控制器中引入了跟踪误差的积分项以抑制跟踪静差. 将建模误差和观测器误差等不确定性看作外部扰动, 在输入到状态稳定性(Input to state stability, ISS)理论框架下分析了跟踪误差系统的鲁棒性, 并据此给出了选择控制器参数的指导性原则.仿真及实验结果表明, 基于观测器的输出反馈控制器能够很好地实现电子节气门的跟踪控制.  相似文献   

18.
For a second‐order mechanical system incorporating Coulomb frictional effect, a nonlinear adaptive control that achieves a controller‐identifier separation is designed. This modularity is made possible by the strong input‐to‐state stability (ISS) property of the ISS controller with respect to the parameter estimation error as input. This input is independently guaranteed to be bounded by the passive identifier. We use two types of passive identifiers: z‐scheme passive identifier and x‐scheme passive identifier. These designs are more flexible than the Lyapunov‐based design and lead to lower control effort. In addition, the advantages and disadvantages of z‐scheme and x‐scheme are presented. Transient performance of the system is enhanced with a trajectory initialization technique. The validity and effectiveness of the proposed friction compensator is verified by simulation for position tracking control under the influence of Coulomb friction.  相似文献   

19.
In this paper, several new Razumikhin‐type theorems for impulsive stochastic functional differential equations are studied by applying stochastic analysis techniques and Razumikhin stability approach. By developing a new comparison principle for stochastic version, some novel criteria of the pth moment integral input‐to‐state stability and input‐to‐state stability are derived for the related systems. The feature of the criteria shows that time‐derivatives of the Razumikhin functions are allowed to be indefinite, even unbounded, which can loosen the constraints of the existing results. Finally, some examples are given to illustrate the usefulness and significance of the theoretical results.  相似文献   

20.
Sontag's formula proves constructively that the existence of a control Lyapunov function implies asymptotic stabilizability. A similar result can be obtained for systems subject to unknown disturbances via input‐to‐state stabilizing control Lyapunov functions (ISS‐clfs) and the input‐to‐state analogue of Sontag's formula. The present paper provides a generalization of the ISS version of Sontag's formula by completely parameterizing all continuous ISS control laws that can be generated by a known ISS‐clf. When a simple inner‐product constraint is satisfied, this parameterization also conveniently describes a large family of ISS controls that solve the inverse‐optimal gain assignment problem, and it is proved that these controls possess Kalman‐type gain margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号