共查询到17条相似文献,搜索用时 46 毫秒
1.
MO Hai-fang 《数字社区&智能家居》2008,(20)
演化算法因其内在的并行行,在求解多目标优化问题时具有独特的优势。本文介绍多目标演化算法的基本原理,并详细讨论基于Pareto最优概念的多目标演化算法。 相似文献
2.
3.
一种高效的多目标演化算法 总被引:1,自引:1,他引:0
为了提高非劣解向Pareto最优前沿收敛的速度及进一步提高解的精度,在设计了一种新的杂交算子并改进了NSGA-Ⅱ的拥挤操作的基础上,提出了一种基于分级策略的多目标演化算法。数值实验表明,新算法能够非常高效地处理高维的最优前沿为凸的、非凸的和不连续前沿的多目标测试函数,得到的非劣解具有很好的分布性质。但在处理高维的具有太多局部最优前沿的多峰函数时极易陷入局部最优前沿。 相似文献
4.
基于演化算法实现多目标优化的岛屿迁徙模型 总被引:2,自引:0,他引:2
多目标演化算法(MOEA)利用种群策略,尽可能地找出多目标问题的Pareto最优集供决策者选择,为决策者提供了更大的选择余地,与其它传统的方法相比有了很大的改进.但提供大量选择的同时,存在着不能为决策者提供一定的指导性信息,不能反映决策者的偏好,可扩展性差等问题.本文提出了一个新的多目标演化算法(MOEA)计算模型…岛屿迁徙模型,该模型体现了一种全新的多目标演化优化的求解思想,对多目标优化问题的最优解集作了新的定义.数值试验结果表明,岛屿迁徙模型在求解MOP时有效地解决了以上问题,并且存在进一步改进的潜力. 相似文献
5.
多目标优化问题的有效Pareto最优集 总被引:2,自引:0,他引:2
多目标优化问题求解是当前演化计算的一个重要研究方向,而基于Pareto最优概念的遗传算法更是研究的重点,然而,遗传算法在解决多目标优化问题上的缺陷却使得其往往得不到一个令人满意的解。在对该类算法研究的基础上提出了衡量Pareto最优解集的标准,并对如何满足这个标准提出了建议。 相似文献
6.
基于正交设计的多目标演化算法 总被引:16,自引:0,他引:16
提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果——Pareto最优解,在此之前,此问题的Pareto最优解是未知的. 相似文献
7.
8.
9.
多目标演化算法的进展研究 总被引:1,自引:0,他引:1
回顾多目标演化算法的研究历史,给出问题相应的数学描述;其次,分析经典的第一代多目标进化算法,阐明这一代算法的优点与不足;对新一代多目标进化算法作详细的分析,其主要特点是构造外部种群实现精英保留机制;最后多目标进化算法的研究方向作展望. 相似文献
10.
通过在目标空间中利用目标本身信息估算个体k最近邻距离之和,作为个体的密度信息,根据个体的密度信息对群体中过剩的非劣解进行逐个去除,以便更好地维护解的多样性,由此给出了一种基于个体密度估算的多目标优化演化算法IDEMOEA。用这个算法对几个典型的多目标优化函数进行测试。测试结果表明,算法IDEMOEA求解多目标优化问题是行之有效的。 相似文献
11.
优化设计中的多目标进化算法 总被引:5,自引:0,他引:5
近十多年来多目标进化算法是人工智能领域的一个相当活跃的研究热点。该文从非Pareto方法、基于Pareto方法及贝叶斯多目标优化算法等角度对当今多目标进化算法进行了分析,归纳了新出现的各种方法和技术,探讨了这个领域发展中存在的问题,并进一步给出了发展方向。此外文中分别对后两类提出了解决一般问题的计算效果较好的改进算法和新的算法。 相似文献
12.
Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons 总被引:6,自引:0,他引:6
Evolutionary techniques for multi-objective(MO) optimization are currently gainingsignificant attention from researchers invarious fields due to their effectiveness androbustness in searching for a set of trade-offsolutions. Unlike conventional methods thataggregate multiple attributes to form acomposite scalar objective function,evolutionary algorithms with modifiedreproduction schemes for MO optimization arecapable of treating each objective componentseparately and lead the search in discoveringthe global Pareto-optimal front. The rapidadvances of multi-objective evolutionaryalgorithms, however, poses the difficulty ofkeeping track of the developments in this fieldas well as selecting an existing approach thatbest suits the optimization problem in-hand.This paper thus provides a survey on variousevolutionary methods for MO optimization. Manywell-known multi-objective evolutionaryalgorithms have been experimented with andcompared extensively on four benchmark problemswith different MO optimization difficulties.Besides considering the usual performancemeasures in MO optimization, e.g., the spreadacross the Pareto-optimal front and the abilityto attain the global trade-offs, the paper alsopresents a few metrics to examinethe strength and weakness of each evolutionaryapproach both quantitatively and qualitatively.Simulation results for the comparisons areanalyzed, summarized and commented. 相似文献
13.
在多目标进化算法的基础上,提出了一种基于云模型的多目标进化算法(CMOEA).算法设计了一种新的变异算子来自适应地调整变异概率,使得算法具有良好的局部搜索能力.算法采用小生境技术,其半径按X条件云发生器非线性动态地调整以便于保持解的多样性,同时动态计算个体的拥挤距离并采用云模型参数来估计个体的拥挤度,逐个删除种群中超出的非劣解以保持解的分布性.将该算法用于多目标0/1背包问题来测试CMOEA的性能,并与目前最流行且有效的多目标进化算法NSGA-II及SPEA2进行了比较.结果表明,CMOEA具有良好的搜索性能,并能很好地维持种群的多样性,快速收敛到Pareto前沿,所获得的Pareto最优解集具有更好的收敛性与分布性. 相似文献
14.
A Study on Distribution Preservation Mechanism in Evolutionary Multi-Objective Optimization 总被引:1,自引:0,他引:1
This paper reviews a number of popular distribution preservation mechanisms and examines their characteristics and effectiveness in evolutionary multi-objective (MO) optimization. A conceptual framework consisting of solution assessment and elitism is presented to better understand the search guidance in evolutionary MO optimization. Simulation studies among different distribution preservation techniques are performed over fifteen representative distribution samples and the performances are compared based upon two distribution metrics proposed in this paper. The results and findings reported in this paper are valuable for better understanding of the working principle and characteristics of distribution preservation mechanisms, which are very useful for incorporating different distribution preservation features into MO evolutionary algorithms in a modular fashion or improving the effectiveness of existing preservation approaches. 相似文献
15.
基于粒子群算法求解多目标优化问题 总被引:58,自引:0,他引:58
粒子群优化算法自提出以来,由于其容易理解、易于实现,所以发展很快,在很多领域得到了应用.通过对粒子群算法全局极值和个体极值选取方式的改进,提出了一种用于求解多目标优化问题的算法,实现了对多目标优化问题的非劣最优解集的搜索,实验结果证明了算法的有效性. 相似文献
16.
热力学遗传算法(Thermodynamical Genetic Algorithms,TDGAs)借鉴热力学中的自由能极小过程来统一处理多目标优化在逼近性和多样性两方面的任务.为提高TDGA的运行效率和解集分布均匀性,提出了一种几何热力学选择.在该选择中首先定义角度熵通过扇形采样来度量种群逼近方向的多样性.然后利用距离精英定义距离能量来度量种群的逼近程度,避免了耗时的非劣分层操作.此外,引入分量热力学替换规则以较低计算代价驱动种群的几何自由能快速下降.在多目标0/1背包问题上的实验结果表明,几何热力学选择极大地提高了TDGA的运行效率和解集分布均匀性;采用该选择的TDGA算法可生成与NSGA-II在逼近性和分布多样性上性能相当的解,但在运行效率上明显优于NSGA-II. 相似文献