共查询到18条相似文献,搜索用时 46 毫秒
1.
关联规则的更新是数据挖掘研究的一个重要内容;能否有效地挖掘出动态事务数据库中的最大频繁项目集是衡量一个关联规则更新算法好坏的关键因素。提出基于FP_tree的最大频繁项目集增量式更新(MFIUP)算法;以处理最小支持度和事务数据库同时发生变化之后相应频繁项目集的更新问题;其中事务数据库的变化同时包括增加和减少两种情况;并对其优越性进行了分析和测试。 相似文献
2.
目前已提出了许多快速的关联规则挖掘算法,实际上用户只关心部分关联规则,如他们仅想 知道包含指定项目的规则.当这些约束被用于数据预处理或将它结合到数据挖掘算法中去时 ,可以显著减少算法的执行时间.为此,考虑了一类包含或不包含某些项目的布尔表达式约 束条件,提出了一种快速的基于FP-tree的约束最大频繁项目集挖掘算法CMFIMA,并对其更 新问题进行了研究,提出了一种增量式更新约束最大频繁项目集挖掘算法CMFIUA. 相似文献
3.
基于FP-tree的最大频繁项目集挖掘算法 总被引:1,自引:0,他引:1
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法. 相似文献
4.
5.
姜玉泉 《计算机工程与应用》2003,39(24):187-188,201
发现最大频繁项目集是多种数据挖掘应用中的关键问题,目前已经提出了许多算法用于发现最大频繁项目集,而对最大频繁项目集维护问题的研究工作却不多,因此,迫切需要设计高效的算法来更新、维护和管理已挖掘出来的最大频繁项目集,为此,该文提出了一种快速的增量式更新最大频繁项目集算法IUAFI,并举例说明了算法的执行过程。 相似文献
6.
一种基于FP-tree的最大频繁项目集挖掘算法 总被引:7,自引:0,他引:7
挖掘关联规则是数据挖掘领域中的重要研究内容,其中挖掘最大频繁项目集是挖掘关联规则中的关键问题之一,以前的许多挖掘最大频繁项目集算法是先生成候选,再进行检验,然而候选项目集产生的代价是很高的,尤其是存在大量长模式的时候。文中改进了FP 树结构,提出了一种基于FP tree的快速挖掘最大频繁项目集的算法DMFIA 1,该算法不需要生成最大频繁候选项目集,比DMFIA算法挖掘最大频繁项目集的效率更高。改进的FP 树是单向的,每个结点只保留指向父结点的指针,这大约节省了三分之一的树空间。 相似文献
7.
8.
为了解决FP-Max算法挖掘最大频繁项目集时递归生成条件模式树和超集检验的问题,提出了基于单向有序FP-Tree的NCFP-Max算法.该算法在挖掘过程中采用预剪枝策略减少挖掘结点,利用单向有序FP-Tree避免每次存储当前挖掘出的频繁项目集之前都需要超集检验,利用项目表格避免递归生成条件模式树减少时空资源.实验结果表明,在事务条数多、项的数量大的情况下,NCFP-Max算法的挖掘时间比FP-Max算法缩短了50%左右. 相似文献
9.
杨萍 《计算机工程与应用》2003,39(34):197-200
最大频繁项目集挖掘是多种数据挖掘应用研究的一个重要方面,最大频繁项目集的快速挖掘算法研究是当前研究的热点。传统的最大频繁项目集挖掘算法要多遍扫描数据库并产生大量的候选项目集。为此,该文提出了基于F-矩阵的最大频繁项目集快速挖掘算法FMMFIBFM,FMMFIBFM采用FP-tree的存储结构,仅须扫描数据库两遍且不产生候选频繁项目集,有效地提高了频繁项目集的挖掘效率。实验结果表明,FMMFIBFM算法是有效可行的。 相似文献
10.
最大频繁项目集的快速更新 总被引:29,自引:0,他引:29
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率. 相似文献
11.
针对频繁项集增量更新的问题,提出算法FIU。该算法将保存了数据库事务的FP-tree存储在磁盘上,当挖掘新支持度阈值的频繁项集时,只需从磁盘上读入FP-tree,再挖掘新支持度阈值下的频繁项集。当新增数据库事务记录后,首先建立新项目表,然后根据新项目表建立新增事务记录的FP-tree,读入存储在磁盘上的FP-tree,抽取出所有的事务记录,再插入到新FP-tree中.从而得到增量更新后的FP-tree。最后在增量更新后的FP-tree上挖掘频繁项集。实验证明,FIU算法执行时间不随数据库大小变化,与其他算法相比有较好的性能。 相似文献
12.
一种改进的关联规则维护算法 总被引:2,自引:0,他引:2
提出了关联规则维护更新问题的背景,分析了经典的关联规则维护算法FUP2算法的局限性,针对在数据库数据集增加和删除时最小支持度同时变化的情况,提出了一种改进的关联规则维护算法EFUP,并与经典的Apriori算法进行了分析比较,表明了该算法充分利用了原有的信息,提高了算法的效率。 相似文献
13.
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法--FP-MFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。 相似文献
14.
一种基于Apriori的动态关联规则挖掘方法 总被引:2,自引:0,他引:2
文章介绍了一种动态关联规则的挖掘方法,该方法的核心思想是仅使用更新的事务和前面阶段的挖掘结果,用Apriori类算法作为局部过程来产生频集,并给出了具体的动态挖掘算法。 相似文献
15.
基于属性分组的高效挖掘关联规则算法 总被引:6,自引:0,他引:6
挖掘频繁项集在数据挖掘中有着重要的作用。目前,关于频繁项集的挖掘问题已经提出了一些算法,虽然实现了一次扫描数据库即可以发现所有的频繁项集,但是当属性数目很多时,算法的执行效率下降很快。论文首次提出了利用属性分组作为挖掘关联规则的工具,给出了基于属性分组的频繁项集挖掘算法,用矩阵来存储数据库属性间的信息并提取频繁项集,而且不产生候选项集。经实验验证该算法是快速有效的。 相似文献
16.
本文采用一种基于布尔矩阵的频繁集挖掘算法。该算法直接通过支持矩阵行向量的按位与运算来找出频繁集,而不需要Apriori算法的连接和剪枝,通过不断压缩支持矩阵,不仅节约了存储空间,还提高了算法的效率。 相似文献
17.
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.现行可用的最大频繁项目集挖掘算法大多基于单机环境,针对分布式环境下的全局最大频繁项目集挖掘尚不多见.若将基于单机环境的最大频繁项目集挖掘算法运用于分布式环境,或运用分布式环境下的全局频繁项目集挖掘算法来挖掘全局最大频繁项目集,均会产生大量的候选频繁项目集,且网络通信代价高.为此,提出了快速挖掘全局最大频繁项目集算法FMGMFI(fast mining global maximum frequent itemsets),该算法采用FP-tree存储结构,可方便地从各局部FP-tree的相关路径中得到项目集的频度,同时采用自顶向下和自底向上的双向搜索策略,可有效地降低网络通信代价.实验结果表明,FMGMF算法是有效、可行的. 相似文献
18.
Xiu-LiMa Yun-HaiTong Shi-WeiTang Dong-QingYang 《计算机科学技术学报》2004,19(6):0-0
Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the entire database repeatedly, which is an obvious disadvantage. In this paper, an efficient incremental mining algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when new incremental data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree and re-running frequent pattern growth (FP-growth). 相似文献