共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Wesslen S. Santhanam A. Karduni I. Cho S. Shaikh W. Dou 《Computer Graphics Forum》2019,38(3):161-171
Cognitive biases are systematic errors in judgment due to an over‐reliance on rule‐of‐thumb heuristics. Recent research suggests that cognitive biases, like numerical anchoring, transfers to visual analytics in the form of visual anchoring. However, it is unclear how visualization users can be visually anchored and how the anchors affect decision‐making. To investigate, we performed a between‐subjects laboratory experiment with 94 participants to analyze the effects of visual anchors and strategy cues using a visual analytics system. The decision‐making task was to identify misinformation from Twitter news accounts. Participants were randomly assigned to conditions that modified the scenario video (visual anchor) and/or strategy cues provided. Our findings suggest that such interventions affect user activity, speed, confidence, and, under certain circumstances, accuracy. We discuss implications of our results on the forking paths problem and raise concerns on how visualization researchers train users to avoid unintentionally anchoring users and affecting the end result. 相似文献
2.
In many scientific disciplines, the motion of finite‐sized objects in fluid flows plays an important role, such as in brownout engineering, sediment transport, oceanology or meteorology. These finite‐sized objects are called inertial particles and, in contrast to traditional tracer particles, their motion depends on their current position, their own particle velocity, the time and their size. Thus, the visualization of their motion becomes a high‐dimensional problem that entails computational and perceptual challenges. So far, no visualization explored and visualized the particle trajectories under variation of all seeding parameters. In this paper, we propose three coordinated views that visualize the different aspects of the high‐dimensional space in which the particles live. We visualize the evolution of particles over time, showing that particles travel different distances in the same time, depending on their size. The second view provides a clear illustration of the trajectories of different particle sizes and allows the user to easily identify differences due to particle size. Finally, we embed the trajectories in the space‐velocity domain and visualize their distance to an attracting manifold using ribbons. In all views, we support interactive linking and brushing, and provide abstraction through density volumes that are shown by direct volume rendering and isosurface slabs. Using our method, users gain deeper insights into the dynamics of inertial particles in 2D fluids, including size‐dependent separation, preferential clustering and attraction. We demonstrate the effectiveness of our method in multiple steady and unsteady 2D flows. 相似文献
3.
Two of the primary reasons rainbow color maps are considered ineffective trace back to the idea that they implicitly discretize encoded data into hue‐based bands, yet no research addresses what this discretization looks like or how consistent it is across individuals. This paper presents an exploratory study designed to empirically investigate the implicit discretization of common spectral schemes and explore whether the phenomenon can be modeled by variations in lightness, chroma, and hue. Our results suggest that three commonly used rainbow color maps are implicitly discretized with consistency across individuals. The results also indicate, however, that this implicit discretization varies across different datasets, in a way that suggests the visualization community's understanding of both rainbow color maps, and more generally effective color usage, remains incomplete. 相似文献
4.
R. Gove 《Computer Graphics Forum》2019,38(3):739-751
This paper proposes a linear‐time repulsive‐force‐calculation algorithm with sub‐linear auxiliary space requirements, achieving an asymptotic improvement over the Barnes‐Hut and Fast Multipole Method force‐calculation algorithms. The algorithm, named random vertex sampling (RVS), achieves its speed by updating a random sample of vertices at each iteration, each with a random sample of repulsive forces. This paper also proposes a combination algorithm that uses RVS to derive an initial layout and then applies Barnes‐Hut to refine the layout. An evaluation of RVS and the combination algorithm compares their speed and quality on 109 graphs against a Barnes‐Hut layout algorithm. The RVS algorithm performs up to 6.1 times faster on the tested graphs while maintaining comparable layout quality. The combination algorithm also performs faster than Barnes‐Hut, but produces layouts that are more symmetric than using RVS alone. Data and code: https://osf.io/nb7m8/ 相似文献
5.
3D representations are potentially useful under many circumstances, but suffer from long known perception and interaction challenges. Current immersive technologies, which combine stereoscopic displays and natural interaction, are being progressively seen as an opportunity to tackle this issue, but new guidelines and studies are still needed, especially regarding information visualization. Many proposed approaches are impractical for actual usage, resulting in user discomfort or requiring too much time or space. In this work, we implement and evaluate an alternative data exploration metaphor where the user remains seated and viewpoint change is only realisable through physical movements. All manipulation is done directly by natural mid‐air gestures, with the data being rendered at arm's reach. The virtual reproduction of the analyst's desk aims to increase immersion and enable tangible interaction with controls and two dimensional associated information. A comparative user study was carried out against a desktop‐based equivalent, exploring a set of 9 perception and interaction tasks based on previous literature and a multidimensional projection use case. We demonstrate that our prototype setup, named VirtualDesk, presents excellent results regarding user comfort and immersion, and performs equally or better in all analytical tasks, while adding minimal or no time overhead and amplifying user subjective perceptions of efficiency and engagement. Results are also contrasted to a previous experiment employing artificial flying navigation, with significant observed improvements. 相似文献
6.
Multidimensional data sets are common in many domains, and dimensionality reduction methods that determine a lower dimensional embedding are widely used for visualizing such data sets. This paper presents a novel method to project data onto a lower dimensional space by taking into account the order statistics of the individual data points, which are quantified by their depth or centrality in the overall set. Thus, in addition to conveying relative distances in the data, the proposed method also preserves the order statistics, which are often lost or misrepresented by existing visualization methods. The proposed method entails a modification of the optimization objective of conventional multidimensional scaling (MDS) by introducing a term that penalizes discrepancies between centrality structures in the original space and the embedding. We also introduce two strategies for visualizing lower dimensional embeddings of multidimensional data that takes advantage of the coherent representation of centrality provided by the proposed projection method. We demonstrate the effectiveness of our visualization with comparisons on different kinds of multidimensional data, including categorical and multimodal, from a variety of domains such as botany and health care. 相似文献
7.
In sports, Play Diagrams are the standard way to represent and convey information. They are widely used by coaches, managers, journalists and fans in general. There are situations where diagrams may be hard to understand, for example, when several actions are packed in a certain region of the field or there are just too many actions to be transformed in a clear depiction of the play. The representation of how actions develop through time, in particular, may be hardly achieved on such diagrams. The time, and the relationship among the actions of the players through time, is critical on the depiction of complex plays. In this context, we present a study on how player actions may be clearly depicted on 2D diagrams. The study is focused on Baseball plays, a sport where diagrams are heavily used to summarize the actions of the players. We propose a new and simple approach to represent spatiotemporal information in the form of a timeline. We designed our visualization with a requirement driven approach, conducting interviews and fulfilling the needs of baseball experts and expert‐fans. We validate our approach by presenting a detailed analysis of baseball plays and conducting interviews with four domain experts. 相似文献
8.
Yalong Yang Bernhard Jenny Tim Dwyer Kim Marriott Haohui Chen Maxime Cordeil 《Computer Graphics Forum》2018,37(3):427-438
This paper explores different ways to render world‐wide geographic maps in virtual reality (VR). We compare: (a) a 3D exocentric globe, where the user's viewpoint is outside the globe; (b) a flat map (rendered to a plane in VR); (c) an egocentric 3D globe, with the viewpoint inside the globe; and (d) a curved map, created by projecting the map onto a section of a sphere which curves around the user. In all four visualisations the geographic centre can be smoothly adjusted with a standard handheld VR controller and the user, through a head‐tracked headset, can physically move around the visualisation. For distance comparison exocentric globe is more accurate than egocentric globe and flat map. For area comparison more time is required with exocentric and egocentric globes than with flat and curved maps. For direction estimation, the exocentric globe is more accurate and faster than the other visual presentations. Our study participants had a weak preference for the exocentric globe. Generally the curved map had benefits over the flat map. In almost all cases the egocentric globe was found to be the least effective visualisation. Overall, our results provide support for the use of exocentric globes for geographic visualisation in mixed‐reality. 相似文献
9.
Interactive visualization tools are being used by an increasing number of members of the general public; however, little is known about how, and how well, people use visualizations to infer causality. Adapted from the mediation causal model, we designed an analytic framework to systematically evaluate human performance, strategies, and pitfalls in a visual causal reasoning task. We recruited 24 participants and asked them to identify the mediators in a fictitious dataset using bar charts and scatter plots within our visualization interface. The results showed that the accuracy of their responses as to whether a variable is a mediator significantly decreased when a confounding variable directly influenced the variable being analyzed. Further analysis demonstrated how individual visualization exploration strategies and interfaces might influence reasoning performance. We also identified common strategies and pitfalls in their causal reasoning processes. Design implications for how future visual analytics tools can be designed to better support causal inference are discussed. 相似文献
10.
The Parallel Vectors (PV) Operator extracts the locations of points where two vector fields are parallel. In general, these features are line structures. The PV operator has been used successfully for a variety of problems, which include finding vortex‐core lines or extremum lines. We present a new generic feature extraction method for multiple 3D vector fields: The Approximate Parallel Vectors (APV) Operator extracts lines where all fields are approximately parallel. The definition of the APV operator is based on the application of PV for two vector fields that are derived from the given set of fields. The APV operator enables the direct visualization of features of vector field ensembles without processing fields individually and without causing visual clutter. We give a theoretical analysis of the APV operator and demonstrate its utility for a number of ensemble data. 相似文献
11.
We introduce a visual analysis system with GPU acceleration techniques for large sets of trajectories from complex dynamical systems. The approach is based on an interactive Boolean combination of subsets into a Focus+Context phase‐space visualization. We achieve high performance through efficient bitwise algorithms utilizing runtime generated GPU shaders and kernels. This enables a higher level of interactivity for visualizing the large multivariate trajectory data. We explain how our design meets a set of carefully considered analysis requirements, provide performance results, and demonstrate utility through case studies with many‐particle simulation data from two application areas. 相似文献
12.
Measured data often incorporates some amount of uncertainty, which is generally modeled as a distribution of possible samples. In this paper, we consider second‐order symmetric tensors with uncertainty. In the 3D case, this means the tensor data consists of 6 coefficients – uncertainty, however, is encoded by 21 coefficients assuming a multivariate Gaussian distribution as model. The high dimension makes the direct visualization of tensor data with uncertainty a difficult problem, which was until now unsolved. The contribution of this paper consists in the design of glyphs for uncertain second‐order symmetric tensors in 2D and 3D. The construction consists of a standard glyph for the mean tensor that is augmented by a scalar field that represents uncertainty. We show that this scalar field and therefore the displayed glyph encode the uncertainty comprehensively, i.e., there exists a bijective map between the glyph and the parameters of the distribution. Our approach can extend several classes of existing glyphs for symmetric tensors to additionally encode uncertainty and therefore provides a possible foundation for further uncertain tensor glyph design. For demonstration, we choose the well‐known superquadric glyphs, and we show that the uncertainty visualization satisfies all their design constraints. 相似文献
13.
Robert Krueger Qi Han Nikolay Ivanov Sanae Mahtal Dennis Thom Hanspeter Pfister Thomas Ertl 《Computer Graphics Forum》2019,38(3):595-607
The analysis of behavioral city dynamics, such as temporal patterns of visited places and citizens' mobility routines, is an essential task for urban and transportation planning. Social media applications such as Foursquare and Twitter provide access to large‐scale and up‐to‐date dynamic movement data that not only help to understand the social life and pulse of a city but also to maintain and improve urban infrastructure. However, the fast growth rate of this data poses challenges for conventional methods to provide up‐to‐date, flexible analysis. Therefore, planning authorities barely consider it. We present a system and design study to leverage social media data that assist urban and transportation planners to achieve better monitoring and analysis of city dynamics such as visited places and mobility patterns in large metropolitan areas. We conducted a goal‐and‐task analysis with urban planning experts. To address these goals, we designed a system with a scalable data monitoring back‐end and an interactive visual analytics interface. The monitoring component uses intelligent pre‐aggregation to allow dynamic queries in near real‐time. The visual analytics interface leverages unsupervised learning to reveal clusters, routines, and unusual behavior in massive data, allowing to understand patterns in time and space. We evaluated our approach based on a qualitative user study with urban planning experts which demonstrates that intuitive integration of advanced analytical tools with visual interfaces is pivotal in making behavioral city dynamics accessible to practitioners. Our interviews also revealed areas for future research. 相似文献
14.
The Curriculum Vitae (CV, also referred to as “résumé”) is an established representation of a person's academic and professional history. A typical CV is comprised of multiple sections associated with spatio‐temporal, nominal, hierarchical, and ordinal data. The main task of a recruiter is, given a job application with specific requirements, to compare and assess CVs in order to build a short list of promising candidates to interview. Commonly, this is done by viewing CVs in a side‐by‐side fashion. This becomes challenging when comparing more than two CVs, because the reader is required to switch attention between them. Furthermore, there is no guarantee that the CVs are structured similarly, thus making the overview cluttered and significantly slowing down the comparison process. In order to address these challenges, in this paper we propose “CV3”, an interactive exploration environment offering users a new way to explore, assess, and compare multiple CVs, to suggest suitable candidates for specific job requirements. We validate our system by means of domain expert feedback whose results highlight both the efficacy of our approach and its limitations. We learned that CV3 eases the overall burden of recruiters thereby assisting them in the selection process. 相似文献
15.
Jinho Choi Sanghun Jung Deok Gun Park Jaegul Choo Niklas Elmqvist 《Computer Graphics Forum》2019,38(3):249-260
The majority of visualizations on the web are still stored as raster images, making them inaccessible to visually impaired users. We propose a deep‐neural‐network‐based approach that automatically recognizes key elements in a visualization, including a visualization type, graphical elements, labels, legends, and most importantly, the original data conveyed in the visualization. We leverage such extracted information to provide visually impaired people with the reading of the extracted information. Based on interviews with visually impaired users, we built a Google Chrome extension designed to work with screen reader software to automatically decode charts on a webpage using our pipeline. We compared the performance of the back‐end algorithm with existing methods and evaluated the utility using qualitative feedback from visually impaired users. 相似文献
16.
Vortices are important features in vector fields that show a swirling behavior around a common core. The concept of a vortex core line describes the center of this swirling behavior. In this work, we examine the extension of this concept to 3D second‐order tensor fields. Here, a behavior similar to vortices in vector fields can be observed for trajectories of the eigenvectors. Vortex core lines in vector fields were defined by Sujudi and Haimes to be the locations where stream lines are parallel to an eigenvector of the Jacobian. We show that a similar criterion applied to the eigenvector trajectories of a tensor field yields structurally stable lines that we call tensor core lines. We provide a formal definition of these structures and examine their mathematical properties. We also present a numerical algorithm for extracting tensor core lines in piecewise linear tensor fields. We find all intersections of tensor core lines with the faces of a dataset using a simple and robust root finding algorithm. Applying this algorithm to tensor fields obtained from structural mechanics simulations shows that it is able to effectively detect and visualize regions of rotational or hyperbolic behavior of eigenvector trajectories. 相似文献
17.
C. Yau M. Karimzadeh C. Surakitbanharn N. Elmqvist D. S. Ebert 《Computer Graphics Forum》2019,38(3):375-386
Communication‐minded visualizations are designed to provide their audience—managers, decision‐makers, and the public—with new knowledge. Authoring such visualizations effectively is challenging because the audience often lacks the expertise, context, and time that professional analysts have at their disposal to explore and understand datasets. We present a novel summarized line graph visualization technique designed specifically for data analysts to communicate data to decision‐makers more effectively and efficiently. Our summarized line graph reduces a large and detailed dataset of multiple quantitative time‐series into (1) representative data that provides a quick takeaway of the full dataset; (2) analytical highlights that distinguish specific insights of interest; and (3) a data envelope that summarizes the remaining aggregated data. Our summarized line graph achieved the best overall results when evaluated against line graphs, band graphs, stream graphs, and horizon graphs on four representative tasks. 相似文献
18.
19.
W. Meulemans 《Computer Graphics Forum》2019,38(3):713-723
Motivated by visualizing spatial data using proportional symbols, we study the following problem: given a set of overlapping squares of varying sizes, minimally displace the squares as to remove the overlap while maintaining the orthogonal order on their centers. Though this problem is NP‐hard, we show that rotating the squares by 45 degrees into diamonds allows for a linear or convex quadratic program. It is thus efficiently solvable even for relatively large instances. This positive result and the flexibility offered by constraint programming allow us to study various trade‐offs for overlap removal. Specifically, we model and evaluate through computational experiments the relations between displacement, scale and order constraints for static data, and between displacement and temporal coherence for time‐varying data. Finally, we also explore the generalization of our methodology to other shapes. 相似文献
20.
Yong Wang Hammad Haleem Conglei Shi Yanhong Wu Xun Zhao Siwei Fu Huamin Qu 《Computer Graphics Forum》2018,37(3):63-74
With the rapid development of e‐commerce, there is an increasing number of online review websites, such as Yelp, to help customers make better purchase decisions. Viewing online reviews, including the rating score and text comments by other customers, and conducting a comparison between different businesses are the key to making an optimal decision. However, due to the massive amount of online reviews, the potential difference of user rating standards, and the significant variance of review time, length, details and quality, it is difficult for customers to achieve a quick and comprehensive comparison. In this paper, we present E‐Comp, a carefully‐designed visual analytics system based on online reviews, to help customers compare local businesses at different levels of details. More specifically, intuitive glyphs overlaid on maps are designed for quick candidate selection. Grouped Sankey diagram visualizing the rating difference by common customers is chosen for more reliable comparison of two businesses. Augmented word cloud showing adjective‐noun word pairs, combined with a temporal view, is proposed to facilitate in‐depth comparison of businesses in terms of different time periods, rating scores and features. The effectiveness and usability of E‐Comp are demonstrated through a case study and in‐depth user interviews. 相似文献